
EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

MODERN
VHDL TESTBENCHES

AN AXI-STREAM EXAMPLE,
FIRST dead simple, - THEN advanced

- Both as simple as possible

FPGA Conference Europe, Live Online, 6 July 2021

▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up

• January: 1 person

• August : → 16 designers (SW:6, HW:1, FPGA:9) - And still growing fast…

▪ Continues the legacy from

• All Bitvis technical managers are now in EmLogic

• Verification IP and Methodology provider

• Course provider within FPGA Design and Verification

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)

Modern VHDL Testbenches - AXI-Stream example2

UVVM

UVVM = Universal VHDL Verification Methodology

▪ Open Source Verification Library & Methodology

▪ Very structured infrastructure and architecture

▪ Significantly improves Verification Efficiency

▪ Assures a far better Design Quality

▪ Unique Reuse friendliness

▪ Recommended by Doulos for Testbench architecture

▪ Supported by more and more EDA vendors

▪ ESA projects to extend the functionality

▪ Extremely fast adoption by the world-wide VHDL community

What is UVVM?

Modern VHDL Testbenches - AXI-Stream example3

UVVM – World-wide #1

Modern VHDL Testbenches - AXI-Stream example4

2
0
1
8

UVVM
100% up
in 2 years

* According to Wilson Research, per Sept. 2020

FPGA Verification Methodologies,
world-wide, all languages

(VHDL is used by >50% of all FPGA designers)

• Number 1 world-wide for VHDL verification *1

• Number 1 in Europe, indep. of language *1

• Number 2 world-wide, indep. of language

• By far the fastest growing, indep. of language*1

For HDL verification – it is important to:
• have a really structured testbench architecture
• allow control of simultaneous interface activity
• allow efficient reuse at all levels
• allow the complete TB to be controlled from a single sequencer

clock_generator(clk, GC_CLK_PERIOD);

log(ID_LOG_HDR, "Started simulation of IRQC_TB");

...

check_value(irq2cpu, '0', "irq2cpu default inactive");

...

check_stable(irq2cpu, now – v_reset_time);

...

gen_pulse(irqc_source(2), '1', clk_period, "Set source 2 for clock period");

gen_pulse(irqc_source(3), '1', clk, 1, "Set source 3 for 1 period");

...

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD,

"Interrupt expected immediately");

...

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

sbi_check(C_ADDR_IRR, x"AA", "IRR");

sbi_write(C_ADDR_ITR, x"55", "ITR : Set more interrupts");

sbi_check(C_ADDR_IRR, x"FF", "IRR");

...

report_alert_counters(FINAL);

Typical simple verif. scenario
- a low complexity interrupt controller

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

All procedures with:

- Positive acknowledge
If wanted

- Alert message
and mismatch report

- Alert count and ctrl

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

clk gen

test
seque
ncer

Testbench

Modern VHDL Testbenches - AXI-Stream example5

▪ check_stable(), await_stable()

▪ clock_generator(), adjustable_clock_generator()

▪ random(), randomize()

▪ gen_pulse()

▪ block_flag(), unblock_flag(), await_unblock_flag()

▪ await_barrier()

▪ enable_log_msg(), disable_log_msg()

▪ to_string(), fill_string(), to_upper(), replace(), etc…

▪ normalize_and_check()

▪ set_log_file_name(), set_alert_file_name()

▪ wait_until_given_time_after_rising_edge()

▪ etc…

More in UVVM Utility Library

Modern VHDL Testbenches - AXI-Stream example6

Modern VHDL TBs - AXI-stream example7

Well Documented
Added after
presentation

Data communication

May use Utility Library

and provided BFMs

DUT (UART)

p_main (test-sequencer)

RX TXBFM BFM

uart_transmit(x"2A")

sbi_check(C_RX, x"2A")

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

TB: 172 ns. uart_tb uart_transmit(x2A) on UART RX

TB: 192 ns. uart_tb sbi_check(x1, ==> x2A) completed. From UART RX

TB: 192 ns. uart_tb sbi_write(x2, ==> xB3) completed. To UART TX

TB: ERROR:

TB: 192 ns. uart_tb

TB: value was: 'xB2'. expected 'xB3'.

TB: (From uart_expect(xB3))

TB:==

SBI

Modern VHDL Testbenches - AXI-Stream example8

▪ UVVM – The full UVVM
https://github.com/UVVM/UVVM

• Contains the full UVVM with everything you need

 Utility Library, all BFMs, VVC framework, all VVCs, additional general VIP

• All VVCs/VIP are located in dedicated libraries and directories

• Dedicated scripts to compile all or parts

▪ UVVM-Light – A subset of the full UVVM - without VVCs
https://github.com/UVVM/UVVM_Light

• Contains everything you need if you do not want VVCs or Advanced VIP

 Utility Library, all BFMs

• Utility library and all BFMs located in one single library and directory

• Dedicated script to compile all

• Was provided on request from novice designers who
- did not properly understand how to handle multiple libraries,
- wanted fewer files and a smaller footprint

▪ May be Cloned directly or Downloaded as a ZIP-file – Directly from Github

UVVM Download

Modern VHDL Testbenches - AXI-Stream example9

Added after
presentation

https://github.com/UVVM/UVVM
https://github.com/UVVM/UVVM_Light

AXI Stream (AXIS) DUT ++

AXIS
slave

AXIS
master

FIFO

AXIS
Slave

AXIS
Master

Some func.

Other DUT scenarios are handled much the same way:

AXIS
M/S

AXIS
M/S

Some func. AXIS
M/S

AXIS
M/S

Some func.

AXIS
M/S

AXIS
M/S

AXIS
M/S

AXIS
M/S

AXI
lite

Some func.

AXI

AXIS
M/S

Ethernet ADC /
DAC

DMA

SPI

I2C

Intr. Ctrl

Various func etc….

Example DUT:
DUT Starting point:

- tdata 8-bit
- tvalid
- tready

Modern VHDL Testbenches - AXI-Stream example10

p_main
(test-sequencer)
…
axis…_tx(data, …);
axis…_rx(data, …);

…

▪ No test harness (for simplicity)

▪ Sequencer has direct access
to DUT signals

• Thus BFMs from p_main can
also see the DUT signals

AXI-stream - BFM based TB
- as simple as possible

clock_generator

UVVM_Light (from github)

uvvm_util (library)

log, check_value, await_value, etc…

clock_generator()

axistream_transmit(data, ...) (procedure)

axistream_receive(data, ...) (procedure)

axistream_expect(data, ...) (procedure)

etc…

▪ Simplified UVVM

• For simple usage

▪ Subset of UVVM
No VVCs or VCC support

▪ All BFMs in the same
directory and library

BFM based Testbench

Only need to download from Github (clone or zip) and compile (total 5 min)

Modern VHDL Testbenches - AXI-Stream example11

▪ Need to include library
and packages in TB code:

▪ Define your DUT-dedicated
AXI-stream record:
(A must for pre-defined records)

▪ Define your signals:
(Mandatory in any case)

▪ Set tkeep = '1' to the slave BFM
(Must indicate some way…)

▪ You are now ready to write any sequence of transmit, receive or expect:

▪ Or local overloads (skipping the signal parameters):

Required code for AXI-Stream BFM
(Using UVVM_Light)

library uvvm_util;

context uvvm_util.uvvm_util_context;

use uvvm_util.axistream_bfm_pkg.all;

subtype t_axis is t_axistream_if(

tdata(7 downto 0), tkeep(0 downto 0),

tuser(0 downto 0), tstrb(0 downto 0),

tid(0 downto 0), tdest(0 downto 0));

signal m_axis : t_axis;

signal s_axis : t_axis;

s_axis.tkeep <= "1";

-- s_axis.tkeep <= (others => '1');

axistream_expect

(v_exp_data(32 to 63), msg, clk, s_axis);

axistream_transmit

(v_byte_array, msg, clk, m_axis);

axis_expect(v_exp_data(32 to 63), msg); axis_transmit(v_byte_array, msg);

axis_transmit((x"D0", x"D1", x"D2", x"D3"), msg);

Modern VHDL Testbenches - AXI-Stream example12

Resulting transcript +Debug

axistream_transmit(v_byte_array, msg, clk, m_axis);

ID_BFM 122.0 ns axistream_expect(3B)=> OK, received 3B.

ID_BFM 106.0 ns axistream_transmit(3B)=> Tx DONE.

axistream_expect(v_exp_array(0 to 2), "", clk, s_axis);

May add more info for debugging

enable_log_msg(ID_PACKET_INITIATE); enable_log_msg(ID_PACKET_DATA);

ID_PACKET_INITIATE 52.0 ns axistream_transmit(3B)=>

ID_PACKET_DATA 52.0 ns axistream_transmit(3B)=> Tx x"00", byte# 0.

ID_PACKET_DATA 68.0 ns axistream_transmit(3B)=> Tx x"01", byte# 1.

ID_PACKET_DATA 82.0 ns axistream_transmit(3B)=> Tx x"02", byte# 2.

ID_PACKET_COMPLETE 106.0 ns axistream_transmit(3B)=> Tx DONE.

May add similar debugging info for data reception

Note: Removed Prefix and Scope to show on a single line.

Modern VHDL Testbenches - AXI-Stream example13

Documentation BFM

Modern VHDL Testbenches - AXI-Stream example14

Similar docs for all BFMs

Modern VHDL Testbenches - AXI-Stream example15

Documentation BFM

- Syntax + Overloads
- Examples
- Explanations

Configuration
- Protocol Behaviour
- Compliance checking
- Simulation set-up

Defaults are fine…

Compiling UVVM Light

Modern VHDL Testbenches - AXI-Stream example16

vsim -c -do "do ../script/compile.do ../ ."

Similar for ‘ready’

▪ May utilise more of the protocol:

▪ May define different widths

▪ May configure behaviour:

• Set maximum wait cycles

• May set to match data exact or std_match

• May set byte endianness (for SLV larger than data width)

• May set to de-assert tvalid some cycles (randomly or fixed)

• May set to de-assert tready some cycles (randomly or fixed)

• And more…

Advanced BFM usage - in simple TB

tkeep, tuser, tlast,

tstrb, tid, tdest

valid_low_at_word_num
Word index during which the Master BFM shall deassert

valid while sending a packet.

valid_low_duration Number of clock cycles to deassert valid.

Have enabled lots of bug detection in users' AXI stream interfaces

Modern VHDL Testbenches - AXI-Stream example17

valid_low_multiple_random_prob

valid_low_max_random_duration

For more advanced DUT complexity:
→ Use VVCs

DUT (UART)

p_main (test-sequencer)

RX TX

SBI

DUT (UART)

p_main (test-sequencer)

RX TX

SBI
UART
VVC

UART
VVC

SBI VVC

sbi_write(SBI_VVCT,1, C_TX, x"B3")

uart_expect(UART_VVCT, 1, RX, x"B3") uart_expect(x"B3")

sbi_write(C_TX, x"B3")

Modern VHDL Testbenches - AXI-Stream example18

SBI_VVC

VVC: VHDL Verification Component

Testcase

Sequencer SBI_VVC

UART (DUT)

RX
Other Ports

Clocks

Bus interface

TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Same main architecture in every VVC

• >95% same code - apart from BFM calls

VVC Generation

UART BFM to UART_VVC:

less than 30 min
(using vvc_generator.py)→ Standard VVC internal architecture

Modern VHDL Testbenches - AXI-Stream example19

*_VVC

VVC: Easy to extend

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

- Easy to handle split transactions

- Easy to handle out of order execution

Modern VHDL Testbenches - AXI-Stream example20

→ Standard Queuing system

→ Standard handling of multithreaded interfaces

→ Standard control of parallel checkers

▪ Simultaneous activity on multiple interfaces

▪ Encapsulated → Reuse at all levels

▪ Queue → May initiate multiple high level commands

▪ Local Sequencers for predefined higher level commands

▪ Only in UVVM VVCs:

• UNIQUE: Control all VVCs from a single sequencer!

• May insert delay between commands – from sequencer
→ The only system to target cycle related corner cases

• Simple handling of split transactions and out of order protocols

• Common commands to control VVC behaviour

• Simple synchronization of interface actions – from sequencer

• May use Broadcast and Multicast

VVC Advantages

Better Overview, Maintenance, Extensibility and Reuse

Modern VHDL Testbenches - AXI-Stream example21

AXI-stream - VVC based TB (1)

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

Modern VHDL Testbenches - AXI-Stream example22

axistream_transmit(target, data, …);
axistream_expect(target, data, …);

AXI-stream - VVC based TB (2)

UVVM (from github)

uvvm_util (library)

log, check_value, await_value, etc…

▪ Full UVVM (all functionality)

▪ Dedicated library per VVC

• For simpler reuse

▪ All VIP-related functionality
in dedicated VIP directories

▪ Script to compile all UVVM

• Compile all, but
Just include what you need

bitvis_vip_clock_generator (library)

clock_generator_vvc (VVC)

start_clock, ... (procedures / methods)

clock_generator_vvct (global signal)

bitvis_vip_axistream (library)

axistream_vvc (VVC)

axistream_transmit, ... (procedures / methods)

axistream_vvct (global signal) Generic to select Master or Slave

Modern VHDL Testbenches - AXI-Stream example23

▪ Need to include
core libraries and
packages in code

▪ Need to include AXI-Stream
library and packages in code:

▪ Define your AXI-stream record:
(A must for pre-defined records)

▪ Define your signals and connect:
(Mandatory in any case)

▪ Set tkeep = '1' to the slave BFM
(Must indicate some way…)

▪ You are now ready to write any sequence of transmit, receive or expect:

Required code for AXI-Stream VVC

library uvvm_util;

context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;

use uvvm_vvc_framework.ti_vvc_framework_support_pkg.all;

subtype t_axis is t_axistream_if(

tdata(7 downto 0), tkeep(0 downto 0),

tuser(0 downto 0), tstrb(0 downto 0),

tid(0 downto 0), tdest(0 downto 0));

signal m_axis : t_axis;

signal s_axis : t_axis;

s_axis.tkeep <= (others => '1');

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

library bitvis_vip_axistream;

context bitvis_vip_axistream.vvc_context;

axistream_expect(AXISTREAM_VVCT,1, v_exp_array, "Expecting **** ");

Modern VHDL Testbenches - AXI-Stream example24

Resulting transcript +Debug

ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm)

->axistream_expect_bytes(AXISTREAM_VVC,1, 512b): 'Expecting 512b' [7]

Note the changing scope

axistream_expect(AXISTREAM_VVCT,1, v_exp_array, "Expecting **** ");

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm) axistream_transmit(AXISTREAM_VVC,0, 512 bytes): TX 512B [6] ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm)

->axistream_transmit(AXISTREAM_VVC,0, 512 bytes): 'TX 512B' [6]

ID_PACKET_COMPLETE 24346.0 ns AXISTREAM_VVC,0

axistream_transmit(512B)=> Tx DONE. 'TX 512B ' [6]

ID_PACKET_DATA 24202.0 ns AXISTREAM_VVC,0

axistream_transmit(512B)=> Tx x"ED", byte# 493. 'TX 512B ' [6]

- Plus similar additional verbosity as for Transmit

- Plus for both: Debug messages when command reaches Interpreter and Executor

Modern VHDL Testbenches - AXI-Stream example25

Documentation VVC

Modern VHDL Testbenches - AXI-Stream example26

Similar docs for all
BFMs, VVCs,

UVVM and other VIP

Modern VHDL Testbenches - AXI-Stream example27

Documentation VVC

- Syntax + Overloads
- Examples
- Explanations

- BFM Config as for BFM

- Additional VVC setup

Defaults are fine…

Compiling UVVM

Modern VHDL Testbenches - AXI-Stream example28

\script> vsim -c -do "compile_all.do"

▪ May utilise more of the protocol – as for BFM

▪ May define different widths – as for BFM

▪ May configure behaviour – as for BFM

• E.g. to set ready low duration to random :

▪ Additional VVC features

• Parallel stimuli/checks of multiple interfaces

 All controlled from a single sequencer (or more if wanted)

• Queuing of commands separately on each interface

• Delay insertion to allow skewing of interface accesses

• Transaction info available for advanced TBs

• Activity watchdog

• Etc…

Advanced VVC usage

shared_axistream_vvc_config(1).bfm_config.ready_low_duration := C_RANDOM;

shared_axistream_vvc_config(1).bfm_config.ready_low_duration := C_RANDOM;

Modern VHDL Testbenches - AXI-Stream example29

(Same syntax for all VVCs)

Advanced scoreboard-based TB

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

DUT
Model

AXI4- Stream
Scoreboard

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_receive(AXISTREAM_VVCT,1, v_data_array, "Checking via SB");

Modern VHDL Testbenches - AXI-Stream example30

Similar to the BFMs and VVCs for AXI-stream:

• AXI4-lite

• AXI4 Full

• AXI-Stream Master + Slave

• UART Transmit and Receive

• SBI

• SPI Master and Slave

• I2C Master and Slave

• GPIO

• Avalon MM

• Avalon Stream Master and Slave

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone

• Clock Generator

• Error Injector

Lot’s of free UVVM BFMs and VVCs

Modern VHDL Testbenches - AXI-Stream example31

All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection
of

Free & Open Source
VHDL Interface Models

The newer stuff

Modern VHDL Testbenches - AXI-Stream example32

▪ ESA Extensions in ESA-UVVM-1

• Scoreboarding

• Monitors

• Controlling randomisation and functional coverage

• Error injection (Brute force and Protocol aware)

• Local sequencers

• Controlling property checkers

• Watchdog (Simple and Activity based)

• Transaction info

• Hierarchical VVCs - And Scoreboards for these

• Specification Coverage (Requirement/test coverage)

▪ Other general improvements

• All Testbenches and Documentation sources made available

• Lots of new and improved functionality in UVVM, BFMs and VVCs

• New VVCS:Full AXI, Wishbone, GMII, RGMII, Ethernet

▪ Significant extensions coming in Q3 and Q4

ESA is helping
VHDL designers
speed up
FPGA and ASIC
development
and improve
their
product quality!

▪ Pick any Utility Library functionality: (from these plus more)

▪ Pick any BFM - with any cmd

Pick and choose

log() alert() error() manual_check()

check_value() check_stable() await_stable()

await_change() await_value() check_value_in_range()

random() randomize() report_***() enable_log_msg()

justify() fill_string() to_upper() replace()

clock_generator() await_unblock_flag() await_barrier()

AXI4-lite

AXI4-stream I2C

SBI SPI UARTGPIO

AVALON

*_write() *_check() *_transmit() *_receive()

AVALON stream

GMII

RGMII

Added after
presentation

Modern VHDL Testbenches - AXI-Stream example33

▪ Advanced VHDL Verification – Made simple

• Munich 26-28 October

▪ Accellerating FPGA and Digital ASIC Design

• Munich 10-11 November

▪ More courses on demand/request

• On-site, online, public. In Europe and outside Europe

• May adapt or combine courses to your needs

Courses

Design

- Design Architecture & Structure
- Clock Domain Crossing
- Coding and General Digital Design
- Reuse and Design for Reuse
- Timing Closure
- Quality Assurance - at the right level
- Faster and safer design

Verification

- Verification Architecture & Structure
- Self checking testbenches
- BFMs – How to use and make
- Checking values, time aspects, etc
- Verification components
- Advanced Verif: Scoreboard, Models, etc
- State-of-the-art verification methodology

https://emlogic.no/courses/

Modern VHDL Testbenches - AXI-Stream example34

Updated after
presentation

https://emlogic.no/courses/

Summary

Modern VHDL Testbenches - AXI-Stream example35

▪ Huge improvement potential for more structured FPGA verification

UVVM (incl. all) is Open Source

New ESA project is extending UVVM
- Will release new functionality in Q3

UVVM may save 200-2000 hours
on a medium complex project

And at the same time improve
TTM, MTBF & LCC

Structure & Architecture
Structure & Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

UVVM targets all of this

➔ UVVM is a game changer

for efficiency and quality

Usage is exploding

- World-wide number 1 for VHDL
- Fastest growing – of all

EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

Thanks for your attention

Community contributions to UVVM are very welcome…

Please let me know if this would be possible

Modern VHDL Testbenches - AXI-Stream example36

