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▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up

• January:       1 person

• August :  → 16 designers (SW:6, HW:1, FPGA:9) - And still growing fast…

▪ Continues the legacy from

• All Bitvis technical managers are now in EmLogic

• Verification IP and Methodology provider  

• Course provider within FPGA Design and Verification 

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)
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UVVM = Universal VHDL Verification Methodology

▪ Open Source  Verification Library & Methodology

▪ Very structured infrastructure and architecture

▪ Significantly improves Verification Efficiency

▪ Assures a far better Design Quality

▪ Unique Reuse friendliness

▪ Recommended by Doulos for Testbench architecture

▪ Supported by more and more EDA vendors

▪ ESA projects to extend the functionality 

▪ Extremely fast adoption by the world-wide VHDL community

What is UVVM?
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UVVM – World-wide #1
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UVVM
100% up
in 2 years

* According to Wilson Research, per Sept. 2020

FPGA Verification Methodologies, 
world-wide, all languages

(VHDL is used by >50% of all FPGA designers)

• Number 1 world-wide for VHDL verification *1

• Number 1 in Europe, indep. of language *1

• Number 2 world-wide, indep. of language

• By far the fastest growing, indep. of language*1

For HDL verification – it is important to:
• have a really structured testbench architecture
• allow control of simultaneous interface activity
• allow efficient reuse at all levels
• allow the complete TB to be controlled from a single sequencer



clock_generator(clk, GC_CLK_PERIOD);

log(ID_LOG_HDR, "Started simulation of IRQC_TB");

...

check_value(irq2cpu, '0', "irq2cpu default inactive");

...

check_stable(irq2cpu, now – v_reset_time);

...

gen_pulse(irqc_source(2), '1', clk_period, "Set source 2 for clock period");

gen_pulse(irqc_source(3), '1', clk, 1, "Set source 3 for 1 period");

...

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD, 

"Interrupt expected immediately");

...

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

sbi_check(C_ADDR_IRR, x"AA", "IRR");

sbi_write(C_ADDR_ITR, x"55", "ITR : Set more interrupts");

sbi_check(C_ADDR_IRR, x"FF", "IRR");

...

report_alert_counters(FINAL);

Typical simple verif. scenario
- a low complexity interrupt controller

irq_source(n)

IRQC

/
n

clk

SBI  (PIF)

arst irq2cpu 

All procedures with:

- Positive acknowledge
If wanted

- Alert message
and mismatch report

- Alert count and ctrl

irq_source(n)

IRQC

/
n

clk

SBI  (PIF)

arst irq2cpu 

clk gen

test 
seque
ncer

Testbench
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▪ check_stable(),   await_stable()

▪ clock_generator(),   adjustable_clock_generator()

▪ random(), randomize()

▪ gen_pulse()

▪ block_flag(), unblock_flag(), await_unblock_flag()

▪ await_barrier()

▪ enable_log_msg(),   disable_log_msg()

▪ to_string(), fill_string(), to_upper(), replace(), etc…

▪ normalize_and_check()

▪ set_log_file_name(),   set_alert_file_name()

▪ wait_until_given_time_after_rising_edge()

▪ etc…

More in UVVM Utility Library
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Well Documented
Added after
presentation



Data communication 

May use Utility Library

and provided BFMs

DUT (UART)

p_main (test-sequencer)

RX TXBFM BFM

uart_transmit(x"2A")

sbi_check(C_RX, x"2A")

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

TB:  172 ns. uart_tb uart_transmit(x2A) on UART RX

TB:  192 ns. uart_tb    sbi_check(x1, ==> x2A) completed. From UART RX

TB:  192 ns. uart_tb    sbi_write(x2, ==> xB3) completed. To UART TX

TB: ERROR:

TB:     192 ns. uart_tb

TB:             value was: 'xB2'.  expected 'xB3'.

TB:             (From uart_expect(xB3))

TB:==============================================================

SBI
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▪ UVVM – The full UVVM
https://github.com/UVVM/UVVM

• Contains the full UVVM with everything you need

 Utility Library, all BFMs, VVC framework, all VVCs, additional general VIP

• All VVCs/VIP are located in dedicated libraries and directories

• Dedicated scripts to compile all or parts

▪ UVVM-Light – A subset of the full UVVM - without VVCs
https://github.com/UVVM/UVVM_Light

• Contains everything you need if you do not want VVCs or Advanced VIP

 Utility Library, all BFMs

• Utility library and all BFMs located in one single library and directory

• Dedicated script to compile all

• Was provided on request from novice designers who
- did not properly understand how to handle multiple libraries,
- wanted fewer files and a smaller footprint

▪ May be Cloned directly or Downloaded as a ZIP-file – Directly from Github

UVVM Download
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Added after
presentation

https://github.com/UVVM/UVVM
https://github.com/UVVM/UVVM_Light


AXI Stream (AXIS) DUT ++

AXIS
slave

AXIS
master

FIFO

AXIS
Slave

AXIS
Master

Some func.

Other DUT scenarios are handled much the same way:

AXIS
M/S

AXIS
M/S

Some func. AXIS
M/S

AXIS
M/S

Some func.

AXIS
M/S

AXIS
M/S

AXIS
M/S

AXIS
M/S

AXI
lite

Some func.

AXI

AXIS
M/S

Ethernet ADC / 
DAC

DMA

SPI

I2C

Intr. Ctrl

Various func etc….

Example DUT:
DUT Starting point:

- tdata 8-bit
- tvalid
- tready
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p_main
(test-sequencer)
…
axis…_tx(data, …);
axis…_rx(data, …);

…

▪ No test harness (for simplicity)

▪ Sequencer has direct access 
to DUT signals 

• Thus BFMs from p_main can 
also see the DUT signals

AXI-stream - BFM based TB
- as simple as possible

clock_generator

UVVM_Light (from github)

uvvm_util (library)

log, check_value, await_value, etc…

clock_generator( )

axistream_transmit(data, ...) (procedure)

axistream_receive(data, ...) (procedure)

axistream_expect(data, ...) (procedure)

etc…

▪ Simplified UVVM

• For simple usage

▪ Subset of UVVM
No VVCs or VCC support

▪ All BFMs in the same 
directory and library

BFM based Testbench

Only need to download from Github (clone or zip) and compile  (total 5 min) 
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▪ Need to include library 
and packages in TB code:

▪ Define your DUT-dedicated 
AXI-stream record:
(A must for pre-defined records)

▪ Define your signals:
(Mandatory in any case)

▪ Set tkeep = '1' to the slave BFM
(Must indicate some way…)

▪ You are now ready to write any sequence of transmit, receive or expect:

▪ Or local overloads (skipping the signal parameters):

Required code for AXI-Stream BFM
(Using UVVM_Light)

library uvvm_util;

context uvvm_util.uvvm_util_context;

use uvvm_util.axistream_bfm_pkg.all;

subtype t_axis is t_axistream_if(

tdata(7 downto 0), tkeep(0 downto 0),

tuser(0 downto 0), tstrb(0 downto 0),

tid(0 downto 0),   tdest( 0 downto 0));

signal m_axis : t_axis;

signal s_axis : t_axis;

s_axis.tkeep <= "1";

-- s_axis.tkeep <= (others => '1');

axistream_expect

(v_exp_data(32 to 63), msg, clk, s_axis); 

axistream_transmit

(v_byte_array, msg, clk, m_axis); 

axis_expect(v_exp_data(32 to 63), msg); axis_transmit(v_byte_array, msg); 

axis_transmit((x"D0", x"D1", x"D2", x"D3"), msg); 
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Resulting transcript +Debug

axistream_transmit(v_byte_array, msg, clk, m_axis); 

ID_BFM            122.0 ns  axistream_expect(3B)=> OK, received 3B. 

ID_BFM            106.0 ns  axistream_transmit(3B)=> Tx DONE. 

axistream_expect(v_exp_array(0 to 2), "", clk, s_axis);

May add more info for debugging

enable_log_msg(ID_PACKET_INITIATE);       enable_log_msg(ID_PACKET_DATA);

ID_PACKET_INITIATE     52.0 ns  axistream_transmit(3B)=> 

ID_PACKET_DATA         52.0 ns  axistream_transmit(3B)=> Tx x"00", byte# 0. 

ID_PACKET_DATA         68.0 ns  axistream_transmit(3B)=> Tx x"01", byte# 1. 

ID_PACKET_DATA         82.0 ns  axistream_transmit(3B)=> Tx x"02", byte# 2. 

ID_PACKET_COMPLETE    106.0 ns  axistream_transmit(3B)=> Tx DONE. 

May add similar debugging info for data reception

Note: Removed Prefix and Scope to show on a single line.
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Documentation BFM
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Similar docs for all BFMs
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Documentation BFM

- Syntax + Overloads
- Examples
- Explanations

Configuration
- Protocol Behaviour
- Compliance checking
- Simulation set-up

Defaults are fine…



Compiling UVVM Light
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vsim -c -do "do ../script/compile.do ../ ."



Similar for ‘ready’

▪ May utilise more of the protocol: 

▪ May define different widths

▪ May configure behaviour:

• Set maximum wait cycles 

• May set to match data exact or std_match

• May set byte endianness (for SLV larger than data width)

• May set to de-assert tvalid some cycles  (randomly or fixed)

• May set to de-assert tready some cycles (randomly or fixed)

• And more…

Advanced BFM usage - in simple TB

tkeep, tuser, tlast, 

tstrb, tid, tdest

valid_low_at_word_num
Word index during which the Master BFM shall deassert

valid while sending a packet. 

valid_low_duration Number of clock cycles to deassert valid.

Have enabled lots of bug detection in users' AXI stream interfaces 
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valid_low_multiple_random_prob

valid_low_max_random_duration



For more advanced DUT complexity:
→ Use VVCs

DUT (UART)

p_main (test-sequencer)

RX TX

SBI

DUT (UART)

p_main (test-sequencer)

RX TX

SBI
UART
VVC

UART
VVC

SBI VVC

sbi_write(SBI_VVCT,1, C_TX, x"B3")

uart_expect(UART_VVCT, 1, RX, x"B3") uart_expect(x"B3")

sbi_write(C_TX, x"B3")
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SBI_VVC

VVC: VHDL Verification Component

Testcase

Sequencer SBI_VVC

UART (DUT)

RX
Other Ports

Clocks

Bus interface

TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command 
Queue

Same main architecture in every VVC

• >95% same code - apart from BFM calls

VVC Generation

UART BFM to UART_VVC:

less than 30 min
(using vvc_generator.py)→ Standard VVC internal architecture

Modern VHDL Testbenches - AXI-Stream example19



*_VVC

VVC: Easy to extend

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command 
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

- Easy to handle split transactions

- Easy to handle out of order execution
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→ Standard Queuing system

→ Standard handling of multithreaded interfaces

→ Standard control of parallel checkers



▪ Simultaneous activity on multiple interfaces

▪ Encapsulated → Reuse at all levels

▪ Queue  → May initiate multiple high level commands

▪ Local Sequencers for predefined higher level commands

▪ Only in UVVM VVCs:

• UNIQUE: Control all VVCs from a single sequencer!

• May insert delay between commands – from sequencer
→ The only system to target cycle related corner cases

• Simple handling of split transactions and out of order protocols

• Common commands to control VVC behaviour

• Simple synchronization of interface actions – from sequencer

• May use Broadcast and Multicast

VVC Advantages

Better Overview, Maintenance, Extensibility and Reuse
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AXI-stream - VVC based TB (1)

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream 

Slave VVC

AXI4-
Stream 

Master VVC

Clock-Gen
VVC

VVC based Test harness
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axistream_transmit(target, data, …);
axistream_expect(target, data, …);



AXI-stream - VVC based TB (2)

UVVM (from github)

uvvm_util (library)

log, check_value, await_value, etc…

▪ Full UVVM  (all functionality)

▪ Dedicated library per VVC

• For simpler reuse

▪ All VIP-related functionality
in dedicated VIP directories

▪ Script to compile all UVVM

• Compile all, but 
Just include what you need

bitvis_vip_clock_generator (library)

clock_generator_vvc (VVC)

start_clock, ...     (procedures / methods)

clock_generator_vvct (global signal)

bitvis_vip_axistream (library)

axistream_vvc (VVC)

axistream_transmit, ...     (procedures / methods)

axistream_vvct (global signal) Generic to select Master or Slave
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▪ Need to include 
core libraries and 
packages in code

▪ Need to include AXI-Stream
library and packages in code:

▪ Define your AXI-stream record:
(A must for pre-defined records)

▪ Define your signals and connect:
(Mandatory in any case)

▪ Set tkeep = '1' to the slave BFM
(Must indicate some way…)

▪ You are now ready to write any sequence of transmit, receive or expect:

Required code for AXI-Stream VVC

library uvvm_util;

context uvvm_util.uvvm_util_context;

library uvvm_vvc_framework;

use  uvvm_vvc_framework.ti_vvc_framework_support_pkg.all;

subtype t_axis is t_axistream_if(

tdata(7 downto 0), tkeep(0 downto 0),

tuser(0 downto 0), tstrb(0 downto 0),

tid(0 downto 0),   tdest( 0 downto 0));

signal m_axis : t_axis;

signal s_axis : t_axis;

s_axis.tkeep <= (others => '1');

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

library bitvis_vip_axistream;

context bitvis_vip_axistream.vvc_context;

axistream_expect(AXISTREAM_VVCT,1, v_exp_array, "Expecting **** ");
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Resulting transcript +Debug

ID_UVVM_SEND_CMD      50.0 ns   TB seq.(uvvm)                  

->axistream_expect_bytes(AXISTREAM_VVC,1, 512b): 'Expecting 512b'  [7]

Note the changing scope

axistream_expect(AXISTREAM_VVCT,1, v_exp_array, "Expecting **** ");

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

ID_UVVM_SEND_CMD 50.0 ns  TB seq.(uvvm)  axistream_transmit(AXISTREAM_VVC,0, 512 bytes): TX 512B   [6]  ID_UVVM_SEND_CMD        50.0 ns   TB seq.(uvvm)  

->axistream_transmit(AXISTREAM_VVC,0, 512 bytes): 'TX 512B'   [6]

ID_PACKET_COMPLETE   24346.0 ns  AXISTREAM_VVC,0

axistream_transmit(512B)=> Tx DONE. 'TX 512B '  [6]

ID_PACKET_DATA       24202.0 ns  AXISTREAM_VVC,0               

axistream_transmit(512B)=> Tx x"ED", byte# 493. 'TX 512B '  [6]

- Plus similar additional verbosity as for Transmit

- Plus for both: Debug messages when command reaches Interpreter and Executor
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Documentation VVC
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Similar docs for all 
BFMs, VVCs, 

UVVM and other VIP
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Documentation VVC

- Syntax + Overloads
- Examples
- Explanations

- BFM Config as for BFM

- Additional VVC setup

Defaults are fine…



Compiling UVVM
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\script> vsim -c -do "compile_all.do"



▪ May utilise more of the protocol – as for BFM

▪ May define different widths – as for BFM

▪ May configure behaviour – as for BFM

• E.g. to set ready low duration to random : 

▪ Additional VVC features

• Parallel stimuli/checks of multiple interfaces

 All controlled from a single sequencer (or more if wanted)

• Queuing of commands separately on each interface

• Delay insertion to allow skewing of interface accesses

• Transaction info available for advanced TBs

• Activity watchdog

• Etc…

Advanced VVC usage

shared_axistream_vvc_config(1).bfm_config.ready_low_duration := C_RANDOM;

shared_axistream_vvc_config(1).bfm_config.ready_low_duration := C_RANDOM;
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Advanced scoreboard-based TB

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream 

Slave VVC

AXI4-
Stream 

Master VVC

Clock-Gen
VVC

VVC based Test harness

DUT
Model

AXI4- Stream 
Scoreboard

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_receive(AXISTREAM_VVCT,1, v_data_array, "Checking via SB");
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Similar to the BFMs and VVCs for AXI-stream:

• AXI4-lite

• AXI4 Full

• AXI-Stream Master + Slave

• UART Transmit and Receive

• SBI

• SPI Master and Slave

• I2C Master and Slave

• GPIO

• Avalon MM

• Avalon Stream Master and Slave

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone 

• Clock Generator

• Error Injector

Lot’s of free UVVM BFMs and VVCs
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All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection 
of 

Free & Open Source 
VHDL Interface Models



The newer stuff
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▪ ESA Extensions in ESA-UVVM-1

• Scoreboarding

• Monitors

• Controlling randomisation and functional coverage

• Error injection   (Brute force and Protocol aware)

• Local sequencers

• Controlling property checkers

• Watchdog  (Simple and Activity based)

• Transaction info

• Hierarchical VVCs  - And Scoreboards for these

• Specification Coverage  (Requirement/test coverage)

▪ Other general improvements

• All Testbenches and Documentation sources made available

• Lots of new and improved functionality in UVVM, BFMs and VVCs

• New VVCS:Full AXI, Wishbone, GMII, RGMII, Ethernet

▪ Significant extensions coming in Q3 and Q4

ESA is helping 
VHDL designers 
speed up 
FPGA and ASIC 
development 
and improve 
their 
product quality!



▪ Pick any Utility Library functionality:  (from these plus more)

▪ Pick any BFM - with any cmd

Pick and choose

log() alert() error() manual_check()

check_value() check_stable() await_stable()

await_change() await_value() check_value_in_range()

random() randomize() report_***() enable_log_msg()

justify() fill_string() to_upper() replace()

clock_generator() await_unblock_flag() await_barrier()

AXI4-lite

AXI4-stream I2C

SBI SPI UARTGPIO

AVALON

*_write() *_check() *_transmit() *_receive()

AVALON stream

GMII

RGMII

Added after
presentation
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▪ Advanced VHDL Verification – Made simple

• Munich 26-28 October

▪ Accellerating FPGA and Digital ASIC Design 

• Munich 10-11 November

▪ More courses on demand/request

• On-site, online, public. In Europe and outside Europe

• May adapt or combine courses to your needs

Courses

Design

- Design Architecture & Structure
- Clock Domain Crossing
- Coding and General Digital Design
- Reuse and Design for Reuse
- Timing Closure
- Quality Assurance - at the right level
- Faster and safer design

Verification

- Verification Architecture & Structure
- Self checking testbenches
- BFMs – How to use and make
- Checking values, time aspects, etc
- Verification components
- Advanced Verif: Scoreboard, Models, etc
- State-of-the-art verification methodology

https://emlogic.no/courses/
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Updated after
presentation

https://emlogic.no/courses/


Summary
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▪ Huge improvement potential for more structured FPGA verification

UVVM (incl. all) is Open Source

New ESA project is extending UVVM
- Will release new functionality in Q3

UVVM may save 200-2000 hours 
on a medium complex project

And at the same time improve 
TTM, MTBF & LCC 

Structure & Architecture
Structure & Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

UVVM targets all of this

➔ UVVM is a game changer 

for efficiency and quality

Usage is exploding

- World-wide number 1 for VHDL
- Fastest growing – of all



EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre 

Thanks for your attention

Community contributions to UVVM are very welcome…

Please let me know if this would be possible
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