UVWM - .fmﬁﬁsi-

The main benefits of the world S #
VHDL Verification I\/Iethodology

s v
. . ‘ ® v
- e , ° :“,f‘: i"'
By Espen Tallaksen, Director FPGA and Space, EmLogic v S
LIS

EmLogic '

The Norwegian Embedded Systems & FPGA Design Centre

Agenda

= Tntroduction
= The basics of UVVM for simple testbenches
= The basics of UVVM for advanced testbenches

= The main benefits of UVVM

Why UVVM is better

Page 2 UVVM - The main benefits of EmLogic SIEMENS

What is UVVM?

Number 1 world-wide for VHDL verification ™1
By far the fastest growing (indep. of lang.) ™1

= Very structured infrastructure and architecture
- Simplicity where it matters the most
—> Significantly improves Verification Efficiency
—> Assures a far better Design Quality
— Unique Reuse friendliness

Simple as default
Advanced when needed

F

Recommended by Doulos for Testbench architecture 1.\
Supported by more and more EDA vendors

ESA projects to extend the functionality

.@ fast adoption by the world-wide VHDL@

DOULOS

=
%—-’:
({

/ —

—

-@Sa

*1: According to The Wilson Research Group Functional Verification Study from September 2020

Page 3 UVVM - The main benefits of

IBniNgstd SIEMENS

The full overview...

... IS not possible to give in this short presentation, but...

= You can find significantly more details in my previous free webinars for
Mentor/Siemens and Trias:

* 1. An introduction to efficient VHDL verification - using the open source UVVM

https://trias-mikro.de/webinars/an-introduction-to-efficient-vhdl-verification-using-the-open-source-uvvm/

* 2. UVVM - Advanced VHDL Verification — Made simple

https://trias-mikro.de/webinars/uvvm-advanced-vhdl-verification-made-easy/

* 3. Modern VHDL testbenches.
An AXI4-stream example, First dead simple, then advanced — as simple as possible

https://trias-mikro.de/webinars/modern-vhdl-testbenches-an-axi-stream-example-first-dead-simple-then-advanced-as-simple-as-possible/

= T can send you a PDF of the presentations on request (espen.tallaksen@emlogic.no)
= Above webinar references is used in some of the following slides.

Page 4 UVVM - The main benefits of EmLogic SIEMENS

https://trias-mikro.de/webinars/modern-vhdl-testbenches-an-axi-stream-example-first-dead-simple-then-advanced-as-simple-as-possible/

The basics of UVVM
- For simple testbenches

UVVM - The main benefits of
Fage > R dgstd SIEMENS

Typical simple verif. scenario
- a low complexity interrupt controller

Testbench—

clock generator(clk, GC _CLK PERIOD) ;

clk gen TROC
::l dkt irg2cpu [
log (ID LOG HDR, "Started simulation of IRQC TB") ; test Al Ay
- -~ seque| +*|SBI (PIF)
check value(irg2cpu, '0', "irg2cpu default inactive"); ncer | —7®|irg_source(n)

check stable(irg2cpu, now — v_reset time);
gen pulse(irq source(2), 'l', clk period, "Set source 2 for clock period");

await_value(irqchu, U , 0 ns, 2% C_CLK_PERIOD, A" pI‘Ocedures Wlth.
"Interrupt expected immediately"); - Positive acknowledge

C. If wanted
-- Register writes and reads - wvia BFMs
sbi write(C_ADDR IER. x"1lF"“, "“Enable all interrupts”); - Alert message

and mismatch report

report alert counters (FINAL) ; - Alert count and ctrl

Page 6 UVVM - The main benefits of EmLogic SIEMENS

More in UVVM Utility Library

= check_stable(), await_stable()

= clock_generator(), adjustable_clock_generator()
= random(), randomize()

= gen_pulse()

= block_flag(), unblock_flag(), await_unblock_flag()
= await_barrier()

= enable_log_msg(), disable_log_msg()

= to_string(), fill_string(), to_upper(), replace(), etc...
= normalize_and_check()

= set _log_file_name(), set_alert_file_name()

= wait_until_given_time_after_rising_edge()

= etc...

Page 7 UVVM - The main benefits of EmLogic SIEMENS

Well Documented

o

f?" o .1
*: o '

ﬁl-n‘

UVVM Utility Library — Quick Reference

[v_bool =] check_wvalue(value, [exp], aler_level, m=g, [...]) v_atring = to_string(val, [...])

[v_bool =] check_wvalue_in_rangeivalue, min_value, max_wvalue, alert_level, mag, [...]) v_string = justify(val, justified, width, format_spaces, truncate)
v_string = fill_string{wval, width)

check_stable(targei, stable_reqg, alert_level, ms - -

- (target, —=a - - msg, [w_atring = to_upper(val)

await_change({target, min_time, max_time, alert_level, msg, [...]} v_character := ascii_to_char(ascii_pos, [ascii_allow])

await_value(target, exp, min_time, max_time, alert_level, m=g, [...]) v_int = char_to_ascii{character)

await_stable(target, stable_req, stable_req_from, timeout, timeout_from, alert_level, msg, [...]) v_natural := pos_of_leftmost{character, string, [result_if_not_found])
v_natural := pos_of_rightmosti{character, string, [result_if_not_found])

1.1 Checks and awaits

Parameters and examples Description
[v_bool :=] val(bool), [exp(bocl)], alert_level, msa, [scope, [msg_id, [msg_id_panel]]] Checks if val equals exp, and alerts with severity alert_level if the
check_value() val(sl), exp(sl), [match_strictness], alert_level, msg, [scope, [msg_id, [msg_id_panel]]] values do not match. _ _ _
val(slv), exp(slv), [match_strictness], alert_level, msa, [scope, [radix, [format, [msg_id, [msa_id_panel]]]]] | The result of the check is returned as a boolean if the method is
_ P — called as a function.
val(u), expl(u), alert_level, msg, [|a|:||:-< [format, [msg_id, [msg_id_panel]]]]] i . i —
) P — If val is of type slv, unsigned or signed, there are additional optional
val(s), expl(s), alert_level, msg, e, [radix, [format, [msg_id, [msg_id_panel]]]]] arguments:
I{int int alert_level, msg ; [m=g_id, [msg_id_panel]] ' i)
'u'al{l.l'i]Il' exp(in }IJ | | __F P - [L_ I_' [Iﬂ_ -F_!F_‘aru-'-l::] - match_strictness: Specifies if match needs to be exact or std_match
“al{'?a) exp(real), ale I‘_"E o TR LeeeRE _'-:— ; [r 'j‘—f‘ ‘E'”'?l;;] . e.g. "H' ='1". (MATCH_EXACT, MATCH_STD)
val(time), exp(time), = evel, msg, [scope, [msg_id, [msg_id_panel]]] - radix : for the vector representation in the log: BIN, HEX, DEC or
HEX_BIN_IF_INVALID.
Examples (HEX_BIN_IF_INVALID means hexadecimal, unless there are the
check_wvalue(v_int_a, 42, WARNING, "Checking the integer”); vector contains any
v_check := check_walue(v_slvs_a, “11100%, MATCH_EXACT, ERROR, "Checking the SLV", "My Scope”, U, X, Z or W, - in which case it is also logged in binary radix.)
HEX, AS_IS, ID_SEQUENCER, shared_msg_id_panel); - format may be AS_IS or SKIP_LEADING_0. Controls how the vector
- - - T T is formatted in the log.

= — v M—Ttremaitr bemefits o Ilmi}

[tb_Jerrorimsg, Fgmpell

| [tb_Jfailure(msg, [scope]) Signal generators

Simple data communication

[p_main (test-sequencer)]
uart_transmit(x"2A") L sbi_check() =
. " " -> sbi_read() .y= -
sbi_check(CERX, x"2A") > compare May use Utility Library
sbi_write(CLTX, x"B3") TR (e and provided BFMs
uart_expect(x"B3") > uart_receive()
- compare -
5 repeat until match Free, Open source BFMs:
(choose max iterations) AXI4, AXI4-lite, SPI, 12C,
(default 1. Le.firstbyte) — Ayalon MM, AXI4-stream,
Avalon stream, UART, SBI,
TB: 172 ns. uart tb uart transmit(x2A) on UART RX GPIO’ GMII' RGMII'
TB: 192 ns. uart tb sbi check(x1l, ==> x2A) completed. From UART RX . .
= = Quick References provided
TB: 192 ns. uart_tb sbi write(x2, ==> xB3) completed. To UART TX
TB: ERROR:
TB: 192 ns. uart tb
TB: value was: 'xB2'. expected 'xB3'.
TB: (From uart expect (xB3))
TB:

UVVM - The main benefits of
Fage 3 MBSy SIEMENS

AXI-stream BFM based TB

- as simple as possible

clock_generator | BFM based Testbench

axistream transmit(v_byte array, msg, clk, m axis);

p_main
(test-sequencer) DUT
;;ds..._tx(data,) AXIS FIFO AXIS
; : > —>
axis..._rx(data, ...); slave master

UVVM_Light (from github)

uvvm_util (library)
log, check value, await value, etc..
clock generator()

axistream transmit(data, ...) (procedure)
axistream receive (data, ...) (procedure)
axistream expect(data, ...) (procedure)
etc...

Page 10 UVVM - The main bengfits of

= No test harness (for simplicity)

= Sequencer has direct access to DUT signals
* Thus BFMs from p_main can also see the DUT signals

Only need to download from Github (clone or zip)
and compile (total 5 min)

= Simplified UVVM
* For simple usage

= Subset of UVVM
No VVCs or VCC support

= All BFMs in the same directory and library

IBnlNJad SIEMENS

More details on Intro to UVVM

See webinars 1,2

A total of F .
How do you get started? 4minutes check_value() BFMs to handle interfaces AXI-stream example, simple
. . check_value (val, exp, [severity], msg, [scope]) -- + more ; » i
The exhaustive list of what to do: . ® Handle transactions at a higher level E:i:d i‘h'g%35‘:\4a§;?f’:tf:a’:‘nxésﬁeam DUT interface
1. Download from Github : UVVM Light " Checks value against expected (or boolean) ¥ E.g. Read, Write, Send packet, Config, etc g
M/ Clone or download ~ * Triggers an if fail - and reports mismatch + message More understandable for anyone

https://github.com/L /U 1_Light
2. Compile Utility Library
a) Inside your simulator go to 'UVVM_light-master/sim’
b} execute: “source ../script/compile_src.do’
This compiles the Utility Library and all BFMs into uvvm_util

3. Include the library inside your testbench by adding the following lines
before your testbench entity declaration:
library uvvm_util;
context uvvm_uth. uvvm_util_context;

4. Yeu may now enter any utility library command inside your testbench
processes (or subprograms)
e.qg. log("Hello world");

(All BFMs are alse available from wvm_util, All you need to do is 'vse uvvm_util, <bfm pkg name>;)

Y
iz Intreduction to FPGA VHDL Verification f,:‘f{' b'tu"S
“

Overloads for sl, slv, u, s, int, bool, time
= With or without a return value (boolean OK)

-- E.g. inside the test sequencer
check_value (dout, x"00", ERROR, “dout must be default inactive');

BV: 60 ns irqc tb check value(slv x00)=> OK.
dout must be default inactive

ERROR:
192 ns. irga_tb
walue was: 'xFF'. expected 'x00'.
dout must be default inactive

gzgzae

0

’
Intreduction to FPGA VHDL Verification f,:‘f{' b I t VIS
“

Uniform style, method, sequence, result

v

v Simpler code & Improved overview

v

v Easy to add several very useful features

Replaced by:
write (x”22", x"F0”);

or:
sbi_write (C_UART_TX, x"F0”);

¢
18 Introduction to FPGA VHDL Verification ;:'%‘ b,tu’"s
“

If using UVVM-Light, add the package declaration::

use uvvm_util.axistream bfm_pkg.all;

.. then all you have to do to transmit is:

axistream transmit
({x"DO", x"D1", x"D2", x"D3"), “4 byte packet", clk, axistream if m);
or

axistream transmit(v_data array, "Send packet",clk, axistream if m);

Or if receiver:

axistream expect(v_data array, “"Expect packet", clk, axistream if m).

¢
23 Introduction to FPGA VHDL Verification ;:'%‘ b,tu’"s
“

Using the log method

await_value()

8 immHn |0 AL

Result in Modelsim L

=

log (msg)
" Where?

-- Simplest version of all

- Anywhere!

-- In test sequencer as a normal progress msg
log("Checking Registers in UART");

|BV: 160 ns uart_tb Checking Registers in UART ‘

-- In test sequencer as a section header
log (ID_LOG_HDR, "Check defaults for all registers");

BV: 60 ns uart_tb Check defaults for all registers
BV:
Pluss lots of other log variants
¢ - -
8 Introduction to FPGA VHDL Verification & bitvis

await_value(irg, 'l', 0 ns, 2* C_CLK_PERIOD,
ERROR, "Interrupt expected immediately");

= expects (and waits for) a given value on the signal
* inside the given time window
* otherwise timeout - with an alert
* accepts value if already present and min = Ons

A variant on this is await_change()

¢
i1 Introduction to FPGA VHDL Verification ;fc'{' b'tv"s

AXI-stream example, advanced

,______-__-__-_
K Hm I B

T
1
§ 1
1
]
I
1

= To include user array (sideband information)

axistream_transmit
(v_data array(0 to v_numBytes-1), v_user array(0 to v_numWords-1),
"Send data + user data", olk, axistream if m);

= Lots of other variants to support protocol

= Additional protocol checking features

Word index during which the Master BFM shall deassert
valid while sending a packet.

wvalid_low_at_word num

[valid lew_duration |Fumber of clock cycles to deassert valid.]

* ..and more ...
* Has detected lots of user bugs in their AXI stream interface

¢
24 Introduction to FPGA VHDL Verification u{; bitvis

Page 11

UVVM - The main benefits of

IBniNgstd SIEMENS

The basics of UVVM
- For advanced verification

UVVM - The main benefits of EmLogiC SIEMENS

BFM to VVC: Why and how?

BFMs are great for simple testbenches
- Dedicated procedures in a simple package
- Just reference and call from a process

BUT

- A process can only do one thing at a time
Either execute that BFM
Or execute another BFM
Or do something else

To do more than one thing:
- Need an entity (or component)
(VVC = VHDL Verification Component)

Page 13 UVVM - The main benefits of

p_main (test-sequencer)]

ZEN

sbi_write(C_TX, x"B3")

uart_expect(x"B3")

IBniNgstd SIEMENS

BFM to VVC: Why and how?

[p_main (test-sequencer)] [p_main (test-sequencer)]

ZEN

)
>
>

‘A.-----
e

B

po)
_|

\

sbi_write(SBI_VVCT,1, C_TX, x"B3") sbi_write(C_TX, x"B3")
uart_expect(UART_VVCT, 1, RX, x"B3") Tuart_expect(x"B3")

Page 14 UVVM - The main benefits of EmLogic SIEMENS

Page 15

VVC: VHDL Verification Component

/Interpreter) SBI_VVC /Executor)
- Is command for me? o - Fetch from queue
- Is it to be queued? — «— - Case on what to do
‘ Command
- If not: Queue - Call relevant BFM(s)
\Case on what to do / \& Execute transaction/

Testcase

SBI_VVC

Sequencer

e

UVVM - The main benefits of EmLogic SIEMENS

AXI-stream 'VVC based TB

VVC based Testbench

p_main Clock-Gen
(test-sequencer) s > DUT
ax?s..._tx(target, data, ...); AXI4- P AXIS - EIEO | AXIS AX|4-
axis..._rx(target, data, ...); Stream _>) slave master ST
Master VVC [~ Slave VVC

clock_generator

p_main
(test-sequencer)

axis..._tx(data, ...);
axis..._rx(data, ...);

Page 16

VVC based Test harness

BFM based Testbench

DUT

Y

CD AXIS FIFO
slave

AXIS
master

UVVM - The main benefits of

axistream transmi t@TREAM_VVC@v_data_array , msg);

OnIy in UVVM VVCs:

May insert delay between commands - from sequencer

- The only system to target cycle related corner cases

Simple handling of split transactions and out of order protocols
Common commands to control VVC behaviour

May use Broadcast and Multicast

Really unique: Control all VVCs from a single sequencer!

axistream transmit(v_byte array, msqg, @k, m_ax@;
_/

IBnlNJad SIEMENS

—
=

®
7
Q)

Advanced scoreboard-based TB

P o o mm o mm e o o Em Em Em Em Em Em R O R Em Em Em Em Em R R R Em Em Em Em Em Em Em Em = oy

i DUT asmmnn _»AXI4- Stream
ot Model Scoreboard
N

VVC based Testbench

| |

| |

| |

| |

| |

| |

| |

| -

p_main | [ClockGen = < . '
(test-sequencer) : ive 1—>_' buT M . :

' -) |
axis..._tx(target, data, ...); : AX|4- o AX|4- :
axis..._rx(target, data, ...); I |
- a1~ Stream Stream I

K I~ . |Master VVC Slave VVC :
N b e e o o e e e e e an an En En En En e e En e Ee e EE EE EE EE EE EE Em Em Em E [- — J

S e e e e e e e e e e e e e e e e e e mm = o Em Em e e e = == T

axistream transmit (AXISTREAM VVCT,0, v_data array, msg);

—

axistream (receive (AXISTREAM VVCT,1l, v_data_array, "Checking via SB");
e ———

Page 17 UVVM - The main benefits of EmLogic SIEMENS

Specification Coverage

= Assure that all requirements have been verified

1. Specify all requirements

2. Report coverage from test sequencer (or other TB parts)

3. Generate summary report

Requirement
Label
MOTOR_R1
MOTOR_R2
MOTOR_R3
MOTOR_R4

= Solutions exist to report that a testcase finished successfully
* BUT - reporting that a testcase has finished is not sufficient

= What if multiple requirements are covered by the same testcase?

°* E.g. Moving/turning something to a to a given position
R1: Acceleration R2: Speed R3: Deceleration 4: Position etc..

TC1 e=—8R1

TC2 o=@ R 2

TC3 Ol R 3
TC4 @R 4]

Page 18 UVVM - The main benefits of

VS

\\\k\\\\\\
dcesa

Description

The acceleration shall be ***
The speed shall be given by ***
The deceleration shall be ***
The final position shall be ***

TC1 @@ =@
R3 R4

R1 R2

IBniNgstd SIEMENS

More details on — Advanced TBs

See webinar 3

VVC - In its simplest form Watchdogs

Generic Scoreboard
Quick Reference is provided et 2

Spec. Coverage - Design flow
R simiinicdovervien [

Going from BFM to VVC Simple WD Inside Uil Sratteries e Ext gt Developmant Sow Fibe Exampien Fia Syntax
5 = v
~ Req 1. Extract Requirement list, CSV | Requirement list, CSV £
. watchdog_timer(watchdog_ctrl, timeout, [alert_level, [msg]]) Actual Spec. requiremaents UART_REQ_1, Baudrate 9k6 Req. Label>, <Description> 1
Using Bus access (SBI) as example extend_watchdog{watchdog_cirl, ftime_extend]) 2 data -- MB_fo--a{ SBI | UART_REQ 2, Baudrate 19k2 Req. Label>, <Description> 'me>,
- E.qg. wri regi rin DUT reinitialize_watchdog{watchdog_ctrl, timeout) - = UART_REQ_3, Odd parity . sle>);
Testcase d te to a registe u terminate_watchdog(watchdog_ctri) WP ¢ 'M L UART_REQ_4, Active low reset .
N—— Sequencer command using BFM: generic data type
sbi_write(C_ADDR TX, x"2A"); o L o 5 = 5 Testcase Coverage, CSV
= - i Seq. g Somefone -7 | = logging/reparting Configuration record: Counting: 3. Run Testcase UART_REQ 1, t_basic, PASS
[- Semefen] « flushing queue = allow_lossy = entered s T e Reg. Label, <T <test_status>
. 1 ‘. ! | <Req. Label>, <Testcase>, <test status>
i ElEErn S = allow_out_of_order = pending UART_REQ 4, t_basic, PASS Ve
Minimum VVC 1. Interpret command from sequencer in zero time v both o]
2. Execute respective BFM towards DUT | Activicy WD G T ‘ Apply e * mismatch_alert_level * matched c—'
ivity s an . = - 4. Run specif
Sequencer command using VVC: = insert, delete, fetch ete... mismatched O] il UART_REQ 1, COMPLIANT
i agtivity watchdog(timeout, num_exp_wve) 7 . i initial_mi h = dropped (Python script) REQ_2, NON COMPLIANT
sbi_write(SBI_VVCT,1, C_ADDR TX, x"2A"); ignore_initial_mismatc seloted 28:""“{
- - - » . i e = delete - m 2 PLIAN
= Results In above BFM being executed from WWC towards DUT indexed on either entry or position I - e e g |
= optional source element (in addition to expected + actual) initial garbage Pymon)
Very simple VWWC - already allows simultaneous execution of BFMs on different interfaces
4 o o ¢ - - ¢ - -
9 Advanced VHDL verification - Made simple ‘ff‘ bitvis 27 Advanced VHDL verification - Made simple \'\'J"{ bitvis 20 Advanced VHDL verification - Made simple \}'ii bitvis 33 Advanced VHDL verification - Made simple
P 5

Advanced built-in funct. Transaction info transfer

esa Hierarchical VVCs and SBs

* Ctrl randomisation
and functional coverage

* Protocol aware

ethernet send (ETHERNET VVCT,1,TX, v mac dest, v mac sxo, v payload, “Send pkt”),]

AR e .El

ethernet sb.add expected(v_exp); __
Error injection B
* Local sequencers et Some fune, [TWE2 | UART -+ 581 B T samnannent ";
[we] —— . Seq. .-
* Ctrl property checkers ey -+ Somefune [T Wz | 3
Some func, [**[W =3 2 f
Wiz [+ o [Some fun | BUT
| Randomisation Inside BFMs and VVCs Ex. UART/SBI SBI "I EthernetSwitch
e e — wc?
p,;uart_transmit(UART_VVCT, 1, TX, x"AF", "Sending data to Peripheral 17); R Lot |
uart_transmit(UART_VVCT, 1, TX, 5, RANDOM, “Sending 5 random bytes™); | Transaction info Inside VWC - Provided as a global signal |
U vve
- - - ["Brute force" Error Injector Dedicated VIP | [etheznet_redhive (ETHERNET WVCT, 1, RX, v_mac_dest, v_mag_sro, TO_SB, <msg>);]

VVC Error injection record (inside the VVC configuration record above)

Record element Type DEFAULT Description | Monitor Module inside VIP Ex. UART | [(sbi_write(SBI VVCT,1, C_IRQC CLEAR, Ox"FF', "Clear complete interzupt reg");]

parity_bit_error_prob real 0,0 The probability that the WC v
| stop_bit_error_prob real 0,0 The probability that the WWC v‘
| .‘

&gy s i opay - i opay - &gy s
24 Advanced VHDL verification - Made simple & bitvis 25 Advanced VHDL verification - Made simple bt bitvis 26 Advanced VHDL verification - Made simple bt bitvis 28 Advanced VHDL verification - Made simple & bitvis
g v v g

Page 19 UVVM - The main benefits of

IBniNgstd SIEMENS

Main Benefits of UVVM

PPPPPP UVVM - The main benefits of
IBniNgstd SIEMENS

Quality and Efficiency enablers

Structure & Simplicity

Architecture The «mandatory>» target
for any good
Design and Testbench...

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

Page 21 UVVM - The main benefits of EmLogic SIEMENS

The three main development areas for adv. TBs
vs structure and efficiency evaluations

The central sequencer

* Always by far the most time consuming

* Massively simplified (commands + sync)

* Even a SW designer can read and write it

* Any number of VVCs easily controlled

* Huge time saving where it matters the most

8 | Testharness ;

AR ;

=i i

T : UART_RX_VVC 1

estcase ! .

Sequencer,, UART_TX_VVC

'IL.~....... EEEEEEEEEEEEEEEEES --llll"“' ::

\ R R T :
Page 22 UVVM - The main benefits of

Next: Let’s check out the reuse potential

Test harness

Dead simple
Anyone can understand it
Anyone can understand the interaction

Verification Components

Autonomous operation

Encapsulated interface functionality

Easy to extend with new functionality

Easy to adapt to more complex protocols

Plug and play for reuse

Allows really simple test harness

Yields a huge improvement for testcase writers

IBnlNJad SIEMENS

Reuse between Module Testbences

Test ‘ Virtual .

[—
Libraries
|

Test I Virtual I
Verification

Component (A)

sequencer
SPI l

S
Libraries
|

Test Virtual

Libraries

Page 23

DUT Module TB: UART

(Module : UART)

sequencer Verification Bus iniertace
UART Component (A)
(A)
(D)

Virtual
Verification
Component
(B: UART)

“Ext.” /O pamue

DUT IModule TE: SPI

(Module : SPI)
Bus interface

Virtual

¢ Verification
“Ext.” /O Component

(C) (C: SPI)

DUT IModule TE: Eth.

(Module : Eth.)

sequencer Verification Bus interface
Eth. l Componem ' (A)

Virtual

Verification
“ ”» h
Ext.” /O Component

(B) (D: Eth.)

UVVM - The main benefits of

Direct reuse.
Same component.

Structured “copy, paste & modify”.

Modification mainly required for actual
BFMs and higher level protocol - that
really have to be written anyway.

Direct reuse.
Common libraries

-

=» Hence a major reuse between
module testbenches.

= Very efficient & Good overview.

_

)

IBniNgstd SIEMENS

Reuse from module TBs to FPGA TB

Next: The sequencer

FPGATB

Work involved for FPGA TB:
Consider Test harness.
- Remove DUT
- The libraries exist
- I/O VVCs used as is
CPU VVC = BUS IF VVC
- Same Command
- Same arch./structure
- Slightly different BFM

= An extreme reuse from module TBs to FPGA TB
= Hence FPGA testbench can be made very fast

= Very efficient & Good overview.

/

Bl SIEMENS

Testbench Sequencer

Simple example:

sbi_write (SBI_VVCT,1 , x"C2", x"58", "Uart TX");

uart expect (UART VVCT,1,RX, x"58");
uart transmit (UART VVCT,1,TX, x“Al”);

insert delay (UART VVCT,1,TX, 2*C BIT PERIOD) ;
uart transmit (UART VVCT,1,TX, x“B2");
await completion (UART VVCT,1,TX) ;

sbi check (SBI VvCT,1, x"C3", x“Al", "Uart RX");
sbi check (SBI VVvCT,1, x"C3", x“B2", "Uart RX");

report simulation summary;

pPage 25 UVVM - The main benefits of

4)
= Anyone can understand it

= Anyone can write it

_ J

Khuge majority of verificatioh
time is spent on:

- Writing test cases
- Debugging test cases
- Adapting a chaotic testbench

- Debugging inter process comm.

\g Significant speed-up /

IBnlNJad SIEMENS

Quality and Efficiency enablers - revisited

Structure &

Architecture SULBREIY

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

Page 26 UVVM - The main benefits of

UVVM provides this.

UVVM promotes and encourages this.
UVVM facilitates this for your TB
UVVM drives your TB towards this

IBnlNJad SIEMENS

Why UVVM is better

UVVM - The main benefits of EmLogiC SIEMENS

VVC: VHDL Verification Component

Interpreter
- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

—

SBI_VVC

Command
Queue

Executor
- Fetch from queue
«—— - Case on what to do

- Call relevant BFM(s)
& Execute transaction

Same main architecture in every VVC

« >95% same code - apart from BFM calls

— Standard VVC internal architecture
— Standard VVC external interface

Page 28 UVVM - The main benefits of

VVC Generation

UART BFM to UART_VVC:

less than 30 min
(using vvc_generator.py)

IBnlNJad SIEMENS

VVC: Easy to extend

- Easy to add local sequencers - Easy to handle split transactions
- Easy to add checkers/monitors/etc - Easy to handle out of order execution
* VYV .
Interpreter _VVC Executor Standardised:
- Is command for me? - Fetch from queue - Queuing system
- Is it to be queued? — <«——— - Case on what to do _ -
9 T Handling of
- If not: Queue - Call relevant BFM(s) multithreaded
Case on what to do & Execute transaction interfaces
I - Control of
Bit-rate checker Queue parallel checkers

Frame-rate checker

Response-Executor
Gap checker s

Page 29 UVVM - The main benefits of

IBnlNJad SIEMENS

Cycle related corner cases & Multiple interfaces

How do designers handle
Cycle related corner cases?

- Fixed structure
- Overview???

- Reuse???

- Bad synchronisation

Page 30 UVVM - The main benefits of

SIEMENS

More features unique to UVVM

= May simultaneously control all VVCs from a single sequencer - if you like
= Simple synchronization of interface actions — from that single sequencer
= May insert delay between commands - from sequencer

= Simple handling of split transactions and out of order protocols

= Common commands to control general VVC behaviour

= May use Broadcast and Multicast for common commands

The only system to also target cycle related corner cases

The only system to align all interface stimuli and checks from a single test sequencer process
(but still allows multiple test sequencers when that is needed)

Page 31 UVVM - The main benefits of EmLogic SIEMENS

qE EREE"

Wishful thinking? - And the result of that

Corresp.
Wouldn't it be nice if we could ... Corresp. Normal UVVM
Design Verification Testbench Testbench

= handle any number of interfaces in a structured manner? |Complexity Complexity Complexity Complexity

= reuse major TB elements between module TBs?

= reuse major module TB elements in the FPGA TB?

= read the test sequencer almost as simple pseudo code?

" recognise the verification spec. in the test sequencer? ‘ ‘ \
= understand the sequence of event

- just from looking at the test sequencer

Page 32 UVVM - The main benefits of EmLogic SIEMENS

The largest collection of interface models

33

UVVM has by far the largest collection of open source VIP available

All available as both BFMs and VVCs - your choice

Free, Open source BFMs and VVC (*:VVC-only):

- AXI4-lite

- AXI4-stream
- Full AXI4

- Avalon MM

- Avalon Stream

UVVM - The main benefits of

SPI1
I12C
UART
GPIO
SBI

GMII

RGMII

Ethernet (v
Clock Generator
Error Injector ()

IBnlNJad SIEMENS

Summary

25%

20%

15%

Design Projects

10%

5%

Half the project time is spent in verification

2014: Average 46%
2016: Average 49%
2018: Average 50%
2020: Average 51%

1%-20% 21%-30% 31%-40% 41%-50% 51%-60% 61%-70% 71%-80% >80%

-—2014

—2016

100%

47%

u Doing Design

Doing Verification

a\
4%
11%

18%

Half the verification time is spent on debugging

u Test Planning

Testbench Development

Creating Test and Running Simulation

u Debug

u Other

2020 WILSON RESEARCH GROUP, FUNCTIONAL VERIFICATION STUDY, FPGA FUNCTIONAL VERIFICATION TREND REPORT

Structure &

Architecture Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

Page 34

Significantly affects:

Man hours / Cost
Schedule & TTM
Quality & MTTF
Product LCC

... Next project

UVVM - The main benefits of

Easily save 100-500 hours
Sometimes 1000-3000 hours

Reduce late project iterations

Faster SW development

More happy customers

IBniNgstd SIEMENS

The main benefits of the WOF‘[$ SR RN
#1 VHDL Verification MetthGIG

By Espen Tallaksen, Director FPGA and Space, EmLogic

EmLogic -

The Norwegian Embedded Systems & FPGA Design Centre

