
UVVM
The main benefits of the world’s #1

VHDL Verification Methodology

By Espen Tallaksen, Director FPGA and Space, EmLogic

▪ Introduction

▪ The basics of UVVM for simple testbenches

▪ The basics of UVVM for advanced testbenches

▪ The main benefits of UVVM

▪ Why UVVM is better

Agenda

UVVM - The main benefits ofPage 2

UVVM = Universal VHDL Verification Methodology

▪ Open Source Verification Library & Methodology

▪ Very structured infrastructure and architecture
- Simplicity where it matters the most

→ Significantly improves Verification Efficiency

→ Assures a far better Design Quality

→ Unique Reuse friendliness

▪ Extremely fast adoption by the world-wide VHDL community

▪ Recommended by Doulos for Testbench architecture

▪ Supported by more and more EDA vendors

▪ ESA projects to extend the functionality

What is UVVM?

• Number 1 world-wide for VHDL verification *1

• By far the fastest growing (indep. of lang.) *1

*1: According to The Wilson Research Group Functional Verification Study from September 2020

Simple as default
Advanced when needed

UVVM - The main benefits ofPage 3

The full overview…

… is not possible to give in this short presentation, but…

▪ You can find significantly more details in my previous free webinars for
Mentor/Siemens and Trias:

• 1. An introduction to efficient VHDL verification - using the open source UVVM
https://trias-mikro.de/webinars/an-introduction-to-efficient-vhdl-verification-using-the-open-source-uvvm/

• 2. UVVM – Advanced VHDL Verification – Made simple
https://trias-mikro.de/webinars/uvvm-advanced-vhdl-verification-made-easy/

• 3. Modern VHDL testbenches.
An AXI4-stream example, First dead simple, then advanced – as simple as possible

https://trias-mikro.de/webinars/modern-vhdl-testbenches-an-axi-stream-example-first-dead-simple-then-advanced-as-simple-as-possible/

▪ I can send you a PDF of the presentations on request (espen.tallaksen@emlogic.no)

▪ Above webinar references is used in some of the following slides.

UVVM - The main benefits ofPage 4

See webinar ?

https://trias-mikro.de/webinars/modern-vhdl-testbenches-an-axi-stream-example-first-dead-simple-then-advanced-as-simple-as-possible/

The basics of UVVM
- For simple testbenches

UVVM - The main benefits ofPage 5

Typical simple verif. scenario
- a low complexity interrupt controller

clock_generator(clk, GC_CLK_PERIOD);

log(ID_LOG_HDR, "Started simulation of IRQC_TB");

...

check_value(irq2cpu, '0', "irq2cpu default inactive");

...

check_stable(irq2cpu, now – v_reset_time);

...

gen_pulse(irq_source(2), '1', clk_period, "Set source 2 for clock period");

...

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD,

"Interrupt expected immediately");

...

-- Register writes and reads – via BFMs

sbi_write(C_ADDR_IER. x"1F“, “Enable all interrupts”);

...

report_alert_counters(FINAL);

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

All procedures with:

- Positive acknowledge
If wanted

- Alert message
and mismatch report

- Alert count and ctrl

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

clk gen

test
seque
ncer

Testbench

UVVM - The main benefits ofPage 6

▪ check_stable(), await_stable()

▪ clock_generator(), adjustable_clock_generator()

▪ random(), randomize()

▪ gen_pulse()

▪ block_flag(), unblock_flag(), await_unblock_flag()

▪ await_barrier()

▪ enable_log_msg(), disable_log_msg()

▪ to_string(), fill_string(), to_upper(), replace(), etc…

▪ normalize_and_check()

▪ set_log_file_name(), set_alert_file_name()

▪ wait_until_given_time_after_rising_edge()

▪ etc…

More in UVVM Utility Library

UVVM - The main benefits ofPage 7

Well Documented

UVVM - The main benefits ofPage 8

Simple data communication

sbi_check() =
→ sbi_read()
→ compare

uart_expect() =
→ uart_receive()
→ compare
→ repeat until match

(choose max iterations)

(default 1. I.e. first byte)

May use Utility Library

and provided BFMs

DUT (UART)

p_main (test-sequencer)

RX TXBFM BFM

uart_transmit(x"2A")

sbi_check(C_RX, x"2A")

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

TB: 172 ns. uart_tb uart_transmit(x2A) on UART RX

TB: 192 ns. uart_tb sbi_check(x1, ==> x2A) completed. From UART RX

TB: 192 ns. uart_tb sbi_write(x2, ==> xB3) completed. To UART TX

TB: ERROR:

TB: 192 ns. uart_tb

TB: value was: 'xB2'. expected 'xB3'.

TB: (From uart_expect(xB3))

TB:==

Free, Open source BFMs:

AXI4, AXI4-lite, SPI, I2C,
Avalon MM, AXI4-stream,
Avalon stream, UART, SBI,
GPIO, GMII, RGMII, ...

SBI

Quick References provided

UVVM - The main benefits ofPage 9

AXI-stream BFM based TB
- as simple as possible

p_main
(test-sequencer)
…
axis…_tx(data, …);
axis…_rx(data, …);

…

▪ No test harness (for simplicity)

▪ Sequencer has direct access to DUT signals

• Thus BFMs from p_main can also see the DUT signals

clock_generator

UVVM_Light (from github)

uvvm_util (library)

log, check_value, await_value, etc…

clock_generator()

axistream_transmit(data, ...) (procedure)

axistream_receive(data, ...) (procedure)

axistream_expect(data, ...) (procedure)

etc…

▪ Simplified UVVM

• For simple usage

▪ Subset of UVVM
No VVCs or VCC support

▪ All BFMs in the same directory and library

BFM based Testbench

Only need to download from Github (clone or zip)
and compile (total 5 min)

axistream_transmit(v_byte_array, msg, clk, m_axis);

UVVM - The main benefits ofPage 10

See webinar 3

UVVM - The main benefits ofPage 11

See webinars 1,2More details on Intro to UVVM

The basics of UVVM
- For advanced verification

UVVM - The main benefits ofPage 12

DUT (UART)

p_main (test-sequencer)

RX TX

SBI

uart_expect(x"B3")

sbi_write(C_TX, x"B3")

- BFMs are great for simple testbenches

- Dedicated procedures in a simple package

- Just reference and call from a process

- BUT

- A process can only do one thing at a time

- Either execute that BFM

- Or execute another BFM

- Or do something else

- To do more than one thing:
→ Need an entity (or component)

(VVC = VHDL Verification Component)

BFM to VVC: Why and how?

UVVM - The main benefits ofPage 13

BFM to VVC: Why and how?

DUT (UART)

p_main (test-sequencer)

RX TX

SBI
UART
VVC

UART
VVC

SBI VVC

DUT (UART)

p_main (test-sequencer)

RX TX

SBI

sbi_write(SBI_VVCT,1, C_TX, x"B3")

uart_expect(UART_VVCT, 1, RX, x"B3") uart_expect(x"B3")

sbi_write(C_TX, x"B3")

UVVM - The main benefits ofPage 14

SBI_VVC

VVC: VHDL Verification Component

Testcase

Sequencer SBI_VVC

UART (DUT)

RX
Other Ports

Clocks

Bus interface

TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

UVVM - The main benefits ofPage 15

AXI-stream VVC based TB

UVVM - The main benefits ofPage 16

See webinar 3

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

Only in UVVM VVCs:
• May insert delay between commands – from sequencer
→ The only system to target cycle related corner cases

• Simple handling of split transactions and out of order protocols
• Common commands to control VVC behaviour
• May use Broadcast and Multicast
• Really unique: Control all VVCs from a single sequencer!

axistream_transmit(v_byte_array, msg, clk, m_axis);

Advanced scoreboard-based TB

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

DUT
Model

AXI4- Stream
Scoreboard

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_receive(AXISTREAM_VVCT,1, v_data_array, "Checking via SB");

UVVM - The main benefits ofPage 17

▪ Assure that all requirements have been verified

1. Specify all requirements

2. Report coverage from test sequencer (or other TB parts)

3. Generate summary report

▪ Solutions exist to report that a testcase finished successfully

• BUT - reporting that a testcase has finished is not sufficient

▪ What if multiple requirements are covered by the same testcase?

• E.g. Moving/turning something to a to a given position
R1: Acceleration R2: Speed R3: Deceleration 4: Position etc..

Specification Coverage

TC1

TC2
TC3
TC4

R1

R2
R3

R4

TC1
R2 R3 R4R1VS

Requirement
Label

Description

MOTOR_R1 The acceleration shall be ***
MOTOR_R2 The speed shall be given by ***
MOTOR_R3 The deceleration shall be ***
MOTOR_R4 The final position shall be ***

UVVM - The main benefits ofPage 18

See webinar 2

UVVM - The main benefits ofPage 19

More details on – Advanced TBs See webinar 3

Main Benefits of UVVM

UVVM - The main benefits ofPage 20

Quality and Efficiency enablers

Structure & ArchitectureStructure &
Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

UVVM - The main benefits ofPage 21

The «mandatory» target
for any good

Design and Testbench…

The three main development areas for adv. TBs
vs structure and efficiency evaluations

Verification Components

• Autonomous operation

• Encapsulated interface functionality

• Easy to extend with new functionality

• Easy to adapt to more complex protocols

• Plug and play for reuse

• Allows really simple test harness

• Yields a huge improvement for testcase writers

Test harness

• Dead simple

• Anyone can understand it

• Anyone can understand the interaction

The central sequencer

• Always by far the most time consuming

• Massively simplified (commands + sync)

• Even a SW designer can read and write it

• Any number of VVCs easily controlled

• Huge time saving where it matters the most

UVVM - The main benefits ofPage 22

Next: Let’s check out the reuse potential

Reuse between Module Testbences

Test

sequencer

Eth. Virtual

Verification

Component

(D: Eth.)

Libraries

DUT
(Module : Eth.)

“Ext.” I/O

(B)

Bus interface

(A)

Virtual

Verification

Component

(A)

Module TB: Eth.

Test

sequencer

SPI Virtual

Verification

Component

(C: SPI)

Libraries

DUT
(Module : SPI)

“Ext.” I/O

(C)

Bus interface

(A)

Virtual

Verification

Component

(A)

Module TB: SPI

Test

sequencer

UART Virtual

Verification

Component

(B: UART)

Libraries

DUT
(Module : UART)

“Ext.” I/O

(D)

Bus interface

(A)

Virtual

Verification

Component

(A)

Module TB: UART

Structured “copy, paste & modify”.

Modification mainly required for actual
BFMs and higher level protocol - that
really have to be written anyway.

Direct reuse.

Common libraries

Direct reuse.

Same component.

-➔ Hence a major reuse between

module testbenches.

-➔ Very efficient & Good overview.

UVVM - The main benefits ofPage 23

UVVM - The main benefits ofPage 24

Reuse from module TBs to FPGA TB

-➔ An extreme reuse from module TBs to FPGA TB

-➔ Hence FPGA testbench can be made very fast

-➔ Very efficient & Good overview.

Test
seq-

uencer

VVC

B:Eth.

Libraries

VVC

C:SPI

VVC

(X:CPU)

VVC

D:UART

FPGA TB Work involved for FPGA TB:

- Consider Test harness.

- Remove DUT

- - The libraries exist

- - I/O VVCs used as is

- CPU VVC ≈ BUS IF VVC

- Same Command

- Same arch./structure

- Slightly different BFM

Test

sequencer

SPI

Virtual

Verification

Component

(C: SPI)

Utility Library

DUT
(Module : SPI)

“

E

xt

.”

I/

O

(

C

)

Bus

interfa

ce

(A)

Virtual

Verification

Component

(A)

Eth. TB

Test

sequencer

SPI

Virtual

Verification

Component

(C: SPI)

Utility Library

DUT
(Module : SPI)

“

E

xt

.”

I/

O

(

C

)

Bus

interfa

ce

(A)

Virtual

Verification

Component

(A)

SPI TB

Test

sequencer

SPI

Virtual

Verification

Component

(C: SPI)

Utility Library

DUT
(Module : SPI)

“

E

xt

.”

I/

O

(

C

)

Bus

interfa

ce

(A)

Virtual

Verification

Component

(A)

UART

Work required for Test Harness only
FPGA

Eth.

Memory

SPI

CPU
IF

DMA

DSP
UART

Next: The sequencer

Testbench Sequencer

Simple example:
. . .

sbi_write(SBI_VVCT,1 , x"C2", x"58", "Uart TX");

uart_expect(UART_VVCT,1,RX, x"58“);

uart_transmit(UART_VVCT,1,TX, x“A1”);

insert_delay(UART_VVCT,1,TX, 2*C_BIT_PERIOD);

uart_transmit(UART_VVCT,1,TX, x“B2”);

await_completion(UART_VVCT,1,TX);

sbi_check(SBI_VVCT,1, x"C3", x“A1", "Uart RX");

sbi_check(SBI_VVCT,1, x"C3", x“B2", "Uart RX");

………

report_simulation_summary;

UVVM - The main benefits ofPage 25

A huge majority of verification
time is spent on:

-- Writing test cases

-- Debugging test cases

-- Adapting a chaotic testbench

-- Debugging inter process comm.

-➔ Significant speed-up

-➔ Anyone can understand it

-➔ Anyone can write it

Quality and Efficiency enablers - revisited

Structure & ArchitectureStructure &
Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

UVVM - The main benefits ofPage 26

UVVM provides this.
UVVM promotes and encourages this.
UVVM facilitates this for your TB
UVVM drives your TB towards this

Why UVVM is better

UVVM - The main benefits ofPage 27

SBI_VVC

VVC: VHDL Verification Component

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Same main architecture in every VVC

• >95% same code - apart from BFM calls
VVC Generation

UART BFM to UART_VVC:

less than 30 min
(using vvc_generator.py)→Standard VVC internal architecture

→Standard VVC external interface

UVVM - The main benefits ofPage 28

*_VVC

VVC: Easy to extend

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

Standardised:

- Queuing system

- Handling of
multithreaded
interfaces

- Control of
parallel checkers

- Easy to add local sequencers

- Easy to add checkers/monitors/etc

- Easy to handle split transactions

- Easy to handle out of order execution

UVVM - The main benefits ofPage 29

Cycle related corner cases & Multiple interfaces

How do designers handle
Cycle related corner cases?

Test Controller

Clock
Generator

Testcase
Sequencer Adding threads CCL

Ad hoc
"structure"

Lab
?

?

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

- Fixed structure

Testcase
Sequencer

???

- Overview???
- Reuse???
- Bad synchronisation

Good architecture,
overview, reuse & sync.

UVVM - The main benefits ofPage 30

Equally important
for handling

multiple interfaces
in general…

▪ May simultaneously control all VVCs from a single sequencer – if you like

▪ Simple synchronization of interface actions – from that single sequencer

▪ May insert delay between commands – from sequencer

▪ Simple handling of split transactions and out of order protocols

▪ Common commands to control general VVC behaviour

▪ May use Broadcast and Multicast for common commands

More features unique to UVVM

UVVM - The main benefits ofPage 31

The only system to also target cycle related corner cases

The only system to align all interface stimuli and checks from a single test sequencer process
(but still allows multiple test sequencers when that is needed)

UVVM - The main benefits ofPage 32

Wishful thinking? - And the result of that

Wouldn't it be nice if we could ...

▪ handle any number of interfaces in a structured manner?

▪ reuse major TB elements between module TBs?

▪ reuse major module TB elements in the FPGA TB?

▪ read the test sequencer almost as simple pseudo code?

▪ recognise the verification spec. in the test sequencer?

▪ understand the sequence of event

- just from looking at the test sequencer















Design
Complexity

Corresp.
Verification
Complexity

Corresp.
Normal

Testbench
Complexity

UVVM
Testbench
Complexity

UVVM has by far the largest collection of open source VIP available

All available as both BFMs and VVCs – your choice

The largest collection of interface models

UVVM - The main benefits of33

Free, Open source BFMs and VVC (*:VVC-only):

- SPI

- I2C

- UART

- GPIO

- SBI

- GMII

- RGMII

- Ethernet (*)

- Clock Generator

- Error Injector (*)

- AXI4-lite

- AXI4-stream

- Full AXI4

- Avalon MM

- Avalon Stream

Summary

2020 WILSON RESEARCH GROUP, FUNCTIONAL VERIFICATION STUDY, FPGA FUNCTIONAL VERIFICATION TREND REPORT

UVVM - The main benefits ofPage 34

Easily save 100-500 hours
Sometimes 1000-3000 hours

Faster SW development

Significantly affects:

- Man hours / Cost
- Schedule & TTM
- Quality & MTTF
- Product LCC
- … Next project

Reduce late project iterations

More happy customers

UVVM
The main benefits of the world’s
#1 VHDL Verification Methodology

By Espen Tallaksen, Director FPGA and Space, EmLogic

