
EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

UVVM
- Brand new features

from the world’s #1
VHDL Verification Methodology

FPGA Verification Day, Live Online, 23 September 2021

▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up

• January: 1 person

• September: → 18 designers (SW:7, HW:1, FPGA:10) - And still growing…

▪ Continues the legacy from

• All previous Bitvis technical managers are now in EmLogic

• Verification IP and Methodology provider

• Course provider within FPGA Design and Verification

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)

UVVM - Brand new features ...2

UVVM

UVVM – World-wide #1

UVVM - Brand new features ...3

2
0
1
8

UVVM
100% up
in 2 years

* According to Wilson Research, per Sept. 2020

FPGA Verification Methodologies,
world-wide, all languages

(VHDL is used by >50% of all FPGA designers)

• Number 1 world-wide for VHDL verification *1

• Number 1 in Europe, indep. of language *1

• Number 2 world-wide, indep. of language

• By far the fastest growing, indep. of language*1

For HDL verification – it is important to:
• have a really structured testbench architecture
• allow control of simultaneous interface activity
• allow efficient reuse at all levels
• allow the complete TB to be controlled from a single sequencer

clock_generator(clk, GC_CLK_PERIOD);

log(ID_LOG_HDR, "Started simulation of IRQC_TB");

...

check_value(irq2cpu, '0', "irq2cpu default inactive");

...

check_stable(irq2cpu, now – v_reset_time);

...

gen_pulse(irqc_source(2), '1', clk_period, "Set source 2 for clock period");

gen_pulse(irqc_source(3), '1', clk, 1, "Set source 3 for 1 period");

...

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD,

"Interrupt expected immediately");

...

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

sbi_check(C_ADDR_IRR, x"AA", "IRR");

sbi_write(C_ADDR_ITR, x"55", "ITR : Set more interrupts");

sbi_check(C_ADDR_IRR, x"FF", "IRR");

...

report_alert_counters(FINAL);

Typical simple verif. scenario
- a low complexity interrupt controller

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

All procedures with:

- Positive acknowledge
If wanted

- Alert message
and mismatch report

- Alert count and ctrl

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

clk gen

test
seque
ncer

Testbench

UVVM - Brand new features ...4

• AXI4-lite

• AXI4 Full

• AXI-Stream Master + Slave

• UART Transmit and Receive

• SBI

• SPI Master and Slave

• I2C Master and Slave

• GPIO

• Avalon MM

• Avalon Stream Master and Slave

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone

• Clock Generator

• Error Injector

Lot’s of free UVVM BFMs and VVCs

UVVM - Brand new features ...5

All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection
of

Free & Open Source
VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the BFM
Allows:
- Simultaneous interface handling
- Synchronization of interfaces
- Skewing between interfaces
- Additional protocol checkers
- Local sequencers
- Activity detection
- Simple reuse between projects

The newer stuff

UVVM - Brand new features ...6

▪ ESA Extensions in ESA-UVVM-1

• Scoreboarding

• Monitors

• Controlling randomisation and functional coverage

• Error injection (Brute force and Protocol aware)

• Local sequencers

• Controlling property checkers

• Watchdog (Simple and Activity based)

• Transaction info

• Hierarchical VVCs - And Scoreboards for these

• Specification Coverage (Requirement/test coverage)

▪ In addition lots of general improvement have been made

ESA is helping VHDL designers speed up
FPGA and ASIC development and
improve their product quality!

▪ For an introduction to current functionality like:

• More key functionality in Utility Library

• BFMs : Functionality and usage

• VVC and their benefits

• The new functionality over the last 2 years

• Why UVVM is #1

Check out my previous Webinars, Posts, and Presentations

The latest presentations being:

MODERN VHDL TESTBENCHES
AN AXI-STREAM EXAMPLE, FIRST dead simple, - THEN advanced - Both as simple as possible

At FPGA Conference Europe, 6 July 2021. (Get in touch if you can't get it there)

UVVM
The main benefits of the world’s #1 VHDL Verification Methodology

At Mentor/Siemens Verification Webinar Series, 4 May 2021
Complete presentation (webinar) available here:
https://webinars.sw.siemens.com/uvvm-the-main-benefits-of-the/room

Today: Focus on New Features

UVVM - Brand new features ...7

https://webinars.sw.siemens.com/uvvm-the-main-benefits-of-the/room

▪ UVVM has had basic Randomisation since 2015

• Good enough for most designers and verification engineers
but….

• We have got many requests for:

 More advanced Randomisation in UVVM

 Better integrated verification – than current alternatives

 More understandable randomisation APIs

▪ UVVM now meets these requests with brand new:

• Enhanced Randomisation

• Optimised Randomisation

Brand New 1 - October 2021

UVVM - Brand new features ...8

▪ Under UVVM Utility library : methods_pkg

▪ Simple functions - using shared variable seeds:

• my_int := random(VOID);

• my_int := random(4, 245);

• my_slv8 := random(8);

• my_byte_array := random(1, 16);

• my_time := random(1 ns, 15 ns);

▪ Also provides support for fixed random sequence

• Needs to control seeds locally

• random(4, 245, seed1, seed2, my_int);

Basic Randomisation in “old” UVVM

UVVM - Brand new features ...9

Still the simplest solution for simple Randomisation

▪ Located under UVVM Utility library : rand_pkg

• New package included in context file
→ Will be available automatically once released

▪ Uses protected types

▪ Allows far better control of randomisation – when needed

• Combine ranges and set of values

• Exclude set of values

• Dedicated control of: 'with replacement' vs 'without replacement'

• Additional multi-method approach for even more detailed control

Enhanced Randomisation

UVVM - Brand new features ...10

variable my_addr : t_rand; -- The only preparation reqd.

▪ "Standard" approach: Randomisation in one single command

• Simple randomisation is always easy to understand

• More complex randomisation is normally more difficult to understand

BUT – there are ways to significantly improve this

• Similar readability focus for weighting

Single Method approach

UVVM - Brand new features ...11

addr <= my_addr.rand(0, 18, EXCL,(7));

addr <= my_addr.rand(0, 18);

addr <= my_addr.rand(0, 18, ADD,(30,31));

addr <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

addr <= my_addr.rand_val_weight((0,2),(1,3),(2,5));

addr <= my_addr.rand_range_weight((0,18,4),(19,31,1));

▪ Well integrated with UVVM

• Alert handling and logging in particular

▪ Strong focus on Overview & Readability

• Adding keywords to ease understanding

▪ Easy to Maintain and Extend

UVVM Enhanced Randomisation

UVVM - Brand new features ...12

Typing code consumes is an insignificant part of the development time.

Reading and understanding code is repeated over and over again, and

is thus a significant part of the development time

➔ Investing in better code yields a huge return on investment

Quality & Efficiency enablers

▪ General Initialisation

▪ General functionality configuration

• Randomisation Distribution + Characteristics (Std. Deviation)

• Weighting of ranges vs sets

▪ Special features

• Unique values in vectors (64 values with unique values between 0 and 255)

• No repeating until all values have been used

Other features

UVVM - Brand new features ...13

.set_rand_seeds(string|integers) & .get_rand_seeds()

.set_name(“address generator”) & .get_name()

.set_scope(“UART TX”) & .get_scope()

payload <= my_data_vector.rand(64, 0,255, UNIQUE);

addr <= my_addr.rand(0, 18, EXCL,(7), CYCLIC);

▪ Extends the functionality of the single method approach

• Single method approach:

• Multi-method - equivalent

• Allows adding more ranges, sets or exclusions

• Allows simple inclusion of future extensions

Multi-method approach (1)

UVVM - Brand new features ...14

addr_1 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

addr_2 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

my_addr.add_range(0, 18);

my_addr.add_val((30,31));

my_addr.excl_val((7));

addr_1 <= my_addr.randm(VOID);

addr_2 <= my_addr.randm(VOID);

Note: randm()
(For clarity
and to avoid any ambiguity)

my_addr.add_range(48,63);

my_addr.add_range(80,127);

▪ Slightly more object oriented

• Thus allows simpler build-up multiple constraints

Multi-method approach (2)

UVVM - Brand new features ...15

Multi-method approach is better for:
- Reuse of constraints – if needed
- More partial or complex constraints – if needed
- Modification of constraints – if needed
- Future functionality extensions (UVVM or other)

Single-method approach is better if :
- Simple constraints, AND
- No need for future extensions in your current testbenches

One approach does not affect the other,
But would not recommend to mix in the same testbench.

May report configuration

UVVM - Brand new features ...16

my_addr.report_config(VOID);

UVVM: ===

UVVM: *** REPORT OF RANDOM GENERATOR CONFIGURATION ***

UVVM: ===

UVVM: NAME : MY_ADDR

UVVM: SCOPE : AXI4_Master

UVVM: SEED 1 : 1969513907

UVVM: SEED 2 : 1510976018

UVVM: DISTRIBUTION : UNIFORM

UVVM: WEIGHT MODE : COMBINED_WEIGHT

UVVM: MEAN CONFIGURED : false

UVVM: MEAN : 0.00

UVVM: STD_DEV CONFIGURED : false

UVVM: STD_DEV : 0.00

UVVM: ===

▪ UVVM introduced Specification Coverage in 2020

• A huge improvement for the whole VHDL Community

• Allowed the simplest possible way of tracking Requirements

• A boost for any design where Quality is important

▪ But - We have also got lots of requests for:

• More Coverage functionality in UVVM

• Better integrated verification – than current alternatives in SV and VHDL

• More understandable expressions and usage

▪ As a result UVVM is now releasing Functional Coverage

• Based on functional coverage in SV

 But in VHDL, and without all the complexity of SV and UVM

• Fully integrated with UVVM, but may be used stand-alone

UVVM - Brand new features ...17

Brand New 2 - October 2021

Functional Coverage – X-B-I

UVVM - Brand new features ...18

(eXtremely Brief Introduction)

▪ Functional Coverage
‘is a user-defined metric that measures how much of the design
specification has been exercised in verification'

• Has various functional scenarios been tested.

• A manual process is required to set up all wanted scenarios

E.g. In a system with a FIFO:
- Has the FIFO been full, - and empty
- Has a write been attempted when full (or read when empty)
- Has the FIFO been full followed by read then write
- etc.

E.g. For a packet oriented protocol (0-256 bytes):
- Has payload size been 0,1,255,256 and something in between
- Has various destination addresses been tested
- Has selected combinations of these been tested

▪ For the given protocol example:
Make sure that corner case payload sizes have been verified

• E.g. at least once for each of: 0, 1, 255, 256 and 2-254

• Then if you generate a packet with payload size of 1 byte,
→ tick off that value

• Continue making packets of different payload-sizes
until all values and ranges have been ticked off.

➔ You have now covered all your selected values and ranges

➔ Your Payload-size Coverpoint is covered

Define Coverpoints (1)

UVVM - Brand new features ...19

(Things you want to check)

A cover point ➔ An actual issue to check

The selected values and ranges are called Bins

▪ For the protocol example:
Make sure that corner case payload sizes have been verified

• E.g. a minimum number of times for each of: 0, 1, 255, 256 and 2-254

• Then if you generate a packet with payload size of 1 byte,
→ Increase the counter for that bin

• Continue making packets of different payload-sizes until all values and
ranges have been applied the minimum number of times required

Define Coverpoints (2)

UVVM - Brand new features ...20

(Things you want to check)

cnt
=0

This minimum required number of hits is called min_hits

cnt
=0

cnt
=0

cnt
=0

cnt =0

min_hits 3 2 10 2 3

cnt
=1

▪ For the protocol example:
Make sure that corner case payload sizes have been verified

• E.g. a minimum number of times for each of: 0, 1, 255, 256 and 2-254

• Then if you generate a packet with payload size of 1 byte,
→ Increase the counter for that bin

• Continue making packets of different payload-sizes until all values and
ranges have been applied the minimum number of times required .

➔ You have now covered all your selected values and ranges

➔ Your Payload-size Coverpoint is covered

Define Coverpoints (2)

UVVM - Brand new features ...21

(Things you want to check)

cnt
=3

This minimum required number of hits is called min_hits

cnt
=4

cnt
=3

cnt
=5

cnt = 417

min_hits 3 2 10 2 3

▪ Define a variable of type t_coverpoint

▪ Add the bins

▪ Tick off bins as their corresponding payload size is used

▪ Continue sending packets until coverage target is reached

Functional Coverage – Typical Sequence

UVVM - Brand new features ...22

variable cp_payload_size : t_coverpoint;

cp_payload_size.add_bins(bin(0));

cp_payload_size.add_bins(bin(1));

cp_payload_size.add_bins(bin_range(2,254,1));

cp_payload_size.add_bins(bin(255,256,2));

cp_payload_size.sample_coverage(payload_size);

while not cp_payload_size.coverage_completed(VOID);

Bin generation

UVVM - Brand new features ...23

bin(0) -- single bin for single value

bin((2,3,6,8)) -- single bin for a set of values

bin_range(0,5) -- single bin for each value in a range

bin_range(0,5,2) -- two bins split evenly on range

bin_vector(addr) -- 2**addr bins

bin_vector(addr,16) -- 16 bins

bin_transition((2,4,8)) -- single bin for given sequence

ignore_bin(7) –- value to be ignored

ignore_bin_range(5,7) -- range to be ignored

ignore_bin_transition(4,8) –- sequence to be ignored

illegal_bin(7) –- illegal value

illegal_bin_range(5,7) -- illegal range

illegal_bin_transition(4,7) –- illegal sequence

Other Functional coverage features

UVVM - Brand new features ...24

▪ .add_cross() : Cross coverage for two or more crosses

▪ .is_defined() : To check if bins have been defined

▪ Coverage goal modification

• Specific cover point coverage modification (for bins)

• or Overall simulation coverage (for all Coverpoint)

• or both

▪ Configuration

• Bin name and scope

• Alert settings (Illegal bin, Bin overlap)

• Coverage weight : Weight of CP for overall coverage

▪ Coverage data base: For accumulation of coverage

Some reports – out of many

UVVM - Brand new features ...25

▪ Optimised Randomisation is

• Randomisation without replacement

• Weighted according to target distribution
AND previous events

• Uses Functional Coverage
mechanisms and protected type

 Target = bins with min_hits

→ the lowest number of randomisations for a given target

➔ Major reduction in # packets and thus simulation time

• Is basically Randomisation and Functional Coverage in one

 Functional need and Use case is Optimised Randomisation

 Mechanism used is that of Functional Coverage + Weight + Rand

Optimised randomisation

UVVM - Brand new features ...26

B:40% B:25%

▪ Developed and maintained by
Inventas and EmLogic

▪ Beta version will be released on Github in October

• As an extension on UVVM utility library

▪ Active UVVM users may have the Alpha version sooner

• Send request to et@emlogic.no

Development and Release of
Randomisation and Functional Coverage

UVVM - Brand new features ...27

mailto:et@emlogic.no

▪ Founding members are Inventas and EmLogic

• We have been cooperating on UVVM since January 2021

 Both on the ESA project and on general UVVM development

▪ All rights will be given to the UVVM Steering group

• Copyrights, Github repo, UVVM forum, uvvm.org

▪ Was founded yesterday…

▪ Steering group Organisation to be defined

▪ Steering group to be extended ASAP after that

▪ We welcome members from the Industy, EDA and Academia

• Must have a strong interest in verification functionality for VHDL

• Must have a good knowledge of and experience with UVVM

• Must want to make UVVM a great tool for the VHDL community

➔ Send email to et@emlogic.no and include reason for wanting to join

Also Brand new: UVVM Steering group

UVVM - Brand new features ...28

mailto:et@emlogic.no

▪ Advanced VHDL Verification – Made simple

• Munich 26-28 October (May change to 5-day online. TBD next week)

▪ Accellerating FPGA and Digital ASIC Design

• Munich 10-11 November (May change to 3- or 4-day online. TBD soon.)

▪ More courses on demand/request

• On-site, online, public. In Europe and outside Europe

• May adapt or combine courses to your needs

Design and Verification Courses

Design

- Design Architecture & Structure
- Clock Domain Crossing
- Coding and General Digital Design
- Reuse and Design for Reuse
- Timing Closure
- Quality Assurance - at the right level
- Faster and safer design

Verification

- Verification Architecture & Structure
- Self checking testbenches
- BFMs – How to use and make
- Checking values, time aspects, etc
- Verification components
- Advanced Verif: Scoreboard, Models, etc
- State-of-the-art verification methodology

UVVM - Brand new features ...29

- Also includes UVVM CR and FC usage
https://emlogic.no/courses/

https://emlogic.no/courses/

UVVM in a nutshell

UVVM - Brand new features ...30

▪ Huge improvement potential for more structured FPGA verification

UVVM (incl. all) is Open Source

New ESA project is extending UVVM
- Will release new functionality in Q4

UVVM may save 200-2000 hours
on a medium complex project

And at the same time improve
TTM, MTBF & LCC

Structure & Architecture
Structure & Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

UVVM targets all of this

➔ UVVM is a game changer

for efficiency and quality

Usage is exploding

- World-wide number 1 for VHDL
- Fastest growing – of all

EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

Thanks for your attention

Community contributions to UVVM are very welcome…

Please let me know if this would be possible

31

