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▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up

• January:       1 person

• September:  → 18 designers (SW:7, HW:1, FPGA:10) - And still growing…

▪ Continues the legacy from

• All previous Bitvis technical managers are now in EmLogic 

• Verification IP and Methodology provider  

• Course provider within FPGA Design and Verification 

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)
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UVVM



UVVM – World-wide #1
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UVVM
100% up
in 2 years

* According to Wilson Research, per Sept. 2020

FPGA Verification Methodologies, 
world-wide, all languages

(VHDL is used by >50% of all FPGA designers)

• Number 1 world-wide for VHDL verification *1

• Number 1 in Europe, indep. of language *1

• Number 2 world-wide, indep. of language

• By far the fastest growing, indep. of language*1

For HDL verification – it is important to:
• have a really structured testbench architecture
• allow control of simultaneous interface activity
• allow efficient reuse at all levels
• allow the complete TB to be controlled from a single sequencer



clock_generator(clk, GC_CLK_PERIOD);

log(ID_LOG_HDR, "Started simulation of IRQC_TB");

...

check_value(irq2cpu, '0', "irq2cpu default inactive");

...

check_stable(irq2cpu, now – v_reset_time);

...

gen_pulse(irqc_source(2), '1', clk_period, "Set source 2 for clock period");

gen_pulse(irqc_source(3), '1', clk, 1, "Set source 3 for 1 period");

...

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD, 

"Interrupt expected immediately");

...

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

sbi_check(C_ADDR_IRR, x"AA", "IRR");

sbi_write(C_ADDR_ITR, x"55", "ITR : Set more interrupts");

sbi_check(C_ADDR_IRR, x"FF", "IRR");

...

report_alert_counters(FINAL);

Typical simple verif. scenario
- a low complexity interrupt controller

irq_source(n)

IRQC

/
n

clk

SBI  (PIF)

arst irq2cpu 

All procedures with:

- Positive acknowledge
If wanted

- Alert message
and mismatch report

- Alert count and ctrl

irq_source(n)

IRQC

/
n

clk

SBI  (PIF)

arst irq2cpu 

clk gen

test 
seque
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Testbench
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• AXI4-lite

• AXI4 Full

• AXI-Stream Master + Slave

• UART Transmit and Receive

• SBI

• SPI Master and Slave

• I2C Master and Slave

• GPIO

• Avalon MM

• Avalon Stream Master and Slave

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone 

• Clock Generator

• Error Injector

Lot’s of free UVVM BFMs and VVCs
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All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection 
of 

Free & Open Source 
VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the BFM
Allows:
- Simultaneous interface handling
- Synchronization of interfaces
- Skewing between interfaces
- Additional protocol checkers
- Local sequencers
- Activity detection
- Simple reuse between projects 



The newer stuff
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▪ ESA Extensions in ESA-UVVM-1

• Scoreboarding

• Monitors

• Controlling randomisation and functional coverage

• Error injection   (Brute force and Protocol aware)

• Local sequencers

• Controlling property checkers

• Watchdog (Simple and Activity based)

• Transaction info

• Hierarchical VVCs  - And Scoreboards for these

• Specification Coverage  (Requirement/test coverage)

▪ In addition lots of general improvement have been made

ESA is helping VHDL designers speed up 
FPGA and ASIC development and 
improve their product quality!



▪ For an introduction to current functionality like:

• More key functionality in Utility Library

• BFMs : Functionality and usage

• VVC and their benefits

• The new functionality over the last 2 years

• Why UVVM is #1

Check out my previous Webinars, Posts, and Presentations

The latest presentations being:

MODERN VHDL TESTBENCHES
AN AXI-STREAM EXAMPLE, FIRST dead simple, - THEN advanced - Both as simple as possible

At FPGA Conference Europe,  6 July 2021.   (Get in touch if you can't get it there)

UVVM
The main benefits of the world’s #1 VHDL Verification Methodology

At Mentor/Siemens Verification Webinar Series, 4 May 2021
Complete presentation (webinar) available here: 
https://webinars.sw.siemens.com/uvvm-the-main-benefits-of-the/room

Today: Focus on New Features
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https://webinars.sw.siemens.com/uvvm-the-main-benefits-of-the/room


▪ UVVM has had basic Randomisation since 2015

• Good enough for most designers and verification engineers
but….

• We have got many requests for:

 More advanced Randomisation in UVVM

 Better integrated verification – than current alternatives

 More understandable randomisation APIs 

▪ UVVM now meets these requests with brand new:

• Enhanced Randomisation

• Optimised Randomisation

Brand New 1 - October 2021
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▪ Under UVVM Utility library : methods_pkg

▪ Simple functions - using shared variable seeds:

• my_int := random(VOID);

• my_int := random(4, 245);

• my_slv8  := random(8);

• my_byte_array := random(1, 16);

• my_time := random(1 ns, 15 ns);

▪ Also provides support for fixed random sequence

• Needs to control seeds locally

• random(4, 245, seed1, seed2, my_int);

Basic Randomisation in “old” UVVM
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Still the simplest solution for simple Randomisation



▪ Located under UVVM Utility library : rand_pkg

• New package included in context file
→ Will be available automatically once released

▪ Uses protected types

▪ Allows far better control of randomisation – when needed

• Combine ranges and set of values

• Exclude set of values

• Dedicated control of: 'with replacement' vs 'without replacement'

• Additional multi-method approach for even more detailed control

Enhanced Randomisation
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variable my_addr : t_rand;  -- The only preparation reqd.



▪ "Standard" approach: Randomisation in one single command

• Simple randomisation is always easy to understand

• More complex randomisation is normally more difficult to understand

BUT – there are ways to significantly improve this

• Similar readability focus for weighting

Single Method approach
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addr <= my_addr.rand(0, 18, EXCL,(7));

addr <= my_addr.rand(0, 18); 

addr <= my_addr.rand(0, 18, ADD,(30,31));

addr <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

addr <= my_addr.rand_val_weight((0,2),(1,3),(2,5));

addr <= my_addr.rand_range_weight((0,18,4),(19,31,1));



▪ Well integrated with UVVM

• Alert handling and logging in particular

▪ Strong focus on Overview & Readability

• Adding keywords to ease understanding

▪ Easy to Maintain and Extend

UVVM Enhanced Randomisation
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Typing code consumes is an insignificant part of the development time.

Reading and understanding code is repeated over and over again, and 

is thus a significant part of the development time

➔ Investing in better code yields a huge return on investment

Quality & Efficiency enablers



▪ General Initialisation

▪ General functionality configuration

• Randomisation Distribution + Characteristics (Std. Deviation)

• Weighting of ranges vs sets

▪ Special features

• Unique values in vectors (64 values with unique values between 0 and 255)

• No repeating until all values have been used

Other features
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.set_rand_seeds(string|integers)  &  .get_rand_seeds()

.set_name(“address generator”)    &  .get_name()

.set_scope(“UART TX”)             &  .get_scope()

payload <= my_data_vector.rand(64, 0,255, UNIQUE); 

addr <= my_addr.rand(0, 18, EXCL,(7), CYCLIC);



▪ Extends the functionality of the single method approach

• Single method approach:

• Multi-method - equivalent

• Allows adding more ranges, sets or exclusions

• Allows simple inclusion of future extensions

Multi-method approach (1)
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addr_1 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

addr_2 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

my_addr.add_range(0, 18);

my_addr.add_val((30,31));

my_addr.excl_val((7));

addr_1 <= my_addr.randm(VOID);

addr_2 <= my_addr.randm(VOID);

Note: randm()
(For clarity 
and to avoid any ambiguity)

my_addr.add_range(48,63);

my_addr.add_range(80,127);



▪ Slightly more object oriented

• Thus allows simpler build-up multiple constraints

Multi-method approach (2)
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Multi-method approach is better for:
- Reuse of constraints – if needed
- More partial or complex constraints – if needed
- Modification of constraints – if needed
- Future functionality extensions (UVVM or other)

Single-method approach is better if :
- Simple constraints, AND
- No need for future extensions in your current testbenches

One approach does not affect the other,
But would not recommend to mix in the same testbench.



May report configuration
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my_addr.report_config(VOID);

# UVVM:  =================================================

# UVVM:  ***  REPORT OF RANDOM GENERATOR CONFIGURATION ***

# UVVM:  =================================================

# UVVM:      NAME               : MY_ADDR

# UVVM:      SCOPE              : AXI4_Master

# UVVM:      SEED 1             : 1969513907

# UVVM:      SEED 2             : 1510976018

# UVVM:      DISTRIBUTION       : UNIFORM

# UVVM:      WEIGHT MODE        : COMBINED_WEIGHT

# UVVM:      MEAN CONFIGURED    : false

# UVVM:      MEAN               : 0.00

# UVVM:      STD_DEV CONFIGURED : false

# UVVM:      STD_DEV            : 0.00

# UVVM: =================================================



▪ UVVM introduced Specification Coverage in 2020

• A huge improvement for the whole VHDL Community

• Allowed the simplest possible way of tracking Requirements

• A boost for any design where Quality is important

▪ But - We have also got lots of requests for:

• More Coverage functionality in UVVM

• Better integrated verification – than current alternatives in SV and VHDL

• More understandable expressions and usage

▪ As a result UVVM is now releasing Functional Coverage

• Based on functional coverage in SV

 But in VHDL, and without all the complexity of SV and UVM

• Fully integrated with UVVM, but may be used stand-alone
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Brand New 2 - October 2021



Functional Coverage – X-B-I
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(eXtremely Brief Introduction)

▪ Functional Coverage
‘is a user-defined metric that measures how much of the design 
specification has been exercised in verification'

• Has various functional scenarios been tested.

• A manual process is required to set up all wanted scenarios

E.g. In a system with a FIFO:
- Has the FIFO been full, - and empty
- Has a write been attempted when full (or read when empty)
- Has the FIFO been full followed by read then write
- etc.

E.g. For a packet oriented protocol (0-256 bytes):
- Has payload size been 0,1,255,256 and something in between
- Has various destination addresses been tested
- Has selected combinations of these been tested



▪ For the given protocol example:
Make sure that corner case payload sizes have been verified

• E.g. at least once for each of:  0, 1, 255, 256 and 2-254 

• Then if you generate a packet with payload size of 1 byte, 
→ tick off that value

• Continue making packets of different payload-sizes
until all values and ranges have been ticked off. 

➔ You have now covered all your selected values and ranges

➔ Your Payload-size Coverpoint is covered

Define Coverpoints (1)
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(Things you want to check)

A cover point ➔ An actual issue to check

   

The selected values and ranges are called Bins



▪ For the protocol example:
Make sure that corner case payload sizes have been verified

• E.g. a minimum number of times for each of:  0, 1, 255, 256 and 2-254

• Then if you generate a packet with payload size of 1 byte, 
→ Increase the counter for that bin

• Continue making packets of different payload-sizes until all values and 
ranges have been applied the minimum number of times required

Define Coverpoints (2)
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(Things you want to check)

cnt
=0

This minimum required number of hits is called min_hits

cnt
=0

cnt
=0

cnt
=0

cnt =0

min_hits 3            2                                    10                                       2            3 

cnt
=1



▪ For the protocol example:
Make sure that corner case payload sizes have been verified

• E.g. a minimum number of times for each of:  0, 1, 255, 256 and 2-254

• Then if you generate a packet with payload size of 1 byte, 
→ Increase the counter for that bin

• Continue making packets of different payload-sizes until all values and 
ranges have been applied the minimum number of times required . 

➔ You have now covered all your selected values and ranges

➔ Your Payload-size Coverpoint is covered

Define Coverpoints (2)
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(Things you want to check)

cnt
=3

This minimum required number of hits is called min_hits

cnt
=4

cnt
=3

cnt
=5

cnt = 417

min_hits 3            2                                    10                                       2            3 



▪ Define a variable of type t_coverpoint

▪ Add the bins

▪ Tick off bins as their corresponding payload size is used

▪ Continue sending packets until coverage target is reached

Functional Coverage – Typical Sequence
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variable cp_payload_size : t_coverpoint;  

cp_payload_size.add_bins(bin(0));

cp_payload_size.add_bins(bin(1)); 

cp_payload_size.add_bins(bin_range(2,254,1)); 

cp_payload_size.add_bins(bin(255,256,2));

cp_payload_size.sample_coverage(payload_size);

while not cp_payload_size.coverage_completed(VOID);



Bin generation
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bin(0) -- single bin for single value

bin((2,3,6,8)) -- single bin for a set of values

bin_range(0,5) -- single bin for each value in a range

bin_range(0,5,2) -- two bins split evenly on range

bin_vector(addr) -- 2**addr bins

bin_vector(addr,16) -- 16 bins

bin_transition((2,4,8))    -- single bin for given sequence

ignore_bin(7)              –- value to be ignored

ignore_bin_range(5,7)      -- range to be ignored

ignore_bin_transition(4,8) –- sequence to be ignored

illegal_bin(7)              –- illegal value

illegal_bin_range(5,7)      -- illegal range

illegal_bin_transition(4,7) –- illegal sequence



Other Functional coverage features
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▪ .add_cross()  : Cross coverage for two or more crosses

▪ .is_defined() : To check if bins have been defined

▪ Coverage goal modification

• Specific cover point coverage modification (for bins)

• or Overall simulation coverage (for all Coverpoint)

• or both

▪ Configuration

• Bin name and scope

• Alert settings (Illegal bin, Bin overlap) 

• Coverage weight : Weight of CP for overall coverage

▪ Coverage data base: For accumulation of coverage



Some reports – out of many
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▪ Optimised Randomisation is 

• Randomisation without replacement

• Weighted according to target distribution
AND previous events

• Uses Functional Coverage
mechanisms and protected type

 Target = bins with min_hits

→ the lowest number of randomisations for a given target

➔ Major reduction in # packets and thus simulation time

• Is basically Randomisation and Functional Coverage in one

 Functional need and Use case is Optimised Randomisation

 Mechanism used is that of Functional Coverage + Weight + Rand

Optimised randomisation
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B:40% B:25%



▪ Developed and maintained by
Inventas and EmLogic

▪ Beta version will be released on Github in October

• As an extension on UVVM utility library

▪ Active UVVM users may have the Alpha version sooner

• Send request to et@emlogic.no

Development and Release of
Randomisation and Functional Coverage
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▪ Founding members are Inventas and EmLogic

• We have been cooperating on UVVM since January 2021

 Both on the ESA project and on general UVVM development

▪ All rights will be given to the UVVM Steering group

• Copyrights, Github repo, UVVM forum, uvvm.org

▪ Was founded yesterday…

▪ Steering group Organisation to be defined

▪ Steering group to be extended ASAP after that

▪ We welcome members from the Industy, EDA and Academia

• Must have a strong interest in verification functionality for VHDL

• Must have a good knowledge of and experience with UVVM

• Must want to make UVVM a great tool for the VHDL community

➔ Send email to et@emlogic.no and include reason for wanting to join

Also Brand new: UVVM Steering group
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▪ Advanced VHDL Verification – Made simple

• Munich 26-28 October (May change to 5-day online. TBD next week)

▪ Accellerating FPGA and Digital ASIC Design 

• Munich 10-11 November (May change to 3- or 4-day online. TBD soon.)

▪ More courses on demand/request

• On-site, online, public.    In Europe and outside Europe

• May adapt or combine courses to your needs

Design and Verification Courses

Design

- Design Architecture & Structure
- Clock Domain Crossing
- Coding and General Digital Design
- Reuse and Design for Reuse
- Timing Closure
- Quality Assurance - at the right level
- Faster and safer design

Verification

- Verification Architecture & Structure
- Self checking testbenches
- BFMs – How to use and make
- Checking values, time aspects, etc
- Verification components
- Advanced Verif: Scoreboard, Models, etc
- State-of-the-art verification methodology
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- Also includes UVVM CR and FC usage
https://emlogic.no/courses/

https://emlogic.no/courses/


UVVM in a nutshell
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▪ Huge improvement potential for more structured FPGA verification

UVVM (incl. all) is Open Source

New ESA project is extending UVVM
- Will release new functionality in Q4

UVVM may save 200-2000 hours 
on a medium complex project

And at the same time improve 
TTM, MTBF & LCC 

Structure & Architecture
Structure & Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

UVVM targets all of this

➔ UVVM is a game changer 

for efficiency and quality

Usage is exploding

- World-wide number 1 for VHDL
- Fastest growing – of all



EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre 

Thanks for your attention

Community contributions to UVVM are very welcome…

Please let me know if this would be possible
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