£ EmLogic
UVVM

- An introduction to
the world’'s #1
VHDL verification methodology

FPGA Conference Europe, 5 July 2022

The Norwegian Embedded Systems and FPGA Design Centre

£ EmLogic

= Independent Design Centre for Embedded Systems and FPGA

= Established 1st of January 2021. Extreme ramp up
* January 2021: 1 person
* July 2022: > 23 designers (SW'8 HW:3, FPGA:10) - And still growing...

= Continues the legacy from '::': bltllls

* All previous Bitvis technical managers are now in EmLogic

* Verification IP and Methodology provider

® Course provider within FPGA Design and Verification
* Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, ...)
®* Advanced VHDL Verification — Made simple (Modern efficient verification using UVVM)

= A potential partner for ESA projects for European companies
* Increased opportunities due to Norway's low geo return

2 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

"Be afraid, be very afraid”

= 'The Design Warrior’s Guide to FPGAS' (by Clive "Max" Maxfield) :
"SW designers look at other code with horror”
"RTL sets new standards for awfulness”

"The majority of designs are almost unintelligible to another designer”

My experience: RTL is heaven compared to testbenches...

Half the development time Nearly half the verification time
on Verification on Debugging

100%

80%
53% 51% s) u Test Planning

60%

Testbench Development

Design Projects

40% Creating Test and Running Simulation

47%
20%

u Debug

u Other
0%

18%

2014 2016 2018 2020

m Doing Design = Doing Verification

3 UVVM - An intro to world's #1 verif. meth.

£ EmLogic

Quality and Efficiency

Solution:
Structure & Simplicity Architecture
Architecture Simplicity - where needed the most

Overview, Readability

Major Challenge:

Modifiability, Maintainability, Extensibility Awareness

Debuggability

=> Prioritise the reader at all times

Reusability

UVVM targets all of this

4 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

UVVM = Universal VHDL Verification Methodology

What is UVVM?

VHDL Verification Library & Methodology
Free and Open Source

Very structured infrastructure and architecture
Significantly improves Verification Efficiency
Assures a far better Design Quality DOULOS

_ \\\m
Recommended by Doulos for Testbench architecture _ esa

ESA projects to extend the functionality

IEEE Standards Association Open source project RAARAY0]2d J\

Included with various simulators SJEMENS Menlar ALDEC
Runs on GHDL B

eeeeeeeeeeeeeee

UVVM - An intro to world's #1 verif. meth. £ Em LogiC

The main architectural needs for TBs

= Depending on DUT complexity
there are various architecture options, needs and levels

= But- there are mainly two main architectural approaches

1. No need to handle simultaneous activity on multiple interfaces
°* For DUT with no contention issues, no cycle related corner cases, etc

= Need only a simple TB with a single test sequencer process
(using procedures and functions as needed, called from this process)

* Including simple extension on this with no complex cycle related corner
cases

+ E.g. Additional processes to apply and fetch data for a simple data flow DUT
2. Need to control and/or check multiple interfaces simultaneously

* DUT has potential cycle related corner cases that need to be checked
= Need to run multiple threads (entities and/or processes) simultaneously

6 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

Example on test sequencer code
and transcript/log

Testbench
clock generator (clk, GC_CLK PERIOD) ; clk gen IRQC
:::cm _
test arst irg2cpu [
seque <% SBI (PIF)
log (ID_LOG_HDR, "Check Interrupt trigger clear mechanism") ; ncer | —7*| irq_source(n)
check value (irg2cpu, '0', "irg2cpu default inactive");

check stable(irg2cpu, now — v_reset time, "Stable irg2cpu");
gen pulse(irq _source, 'l', C_CLK PERIOD, "Set IRQ source for clock period");

await value (irg2cpu, 'l', 0 ns, 2* C_CLK_PERIOD, "Interrupt expected");
All procedures with:

sbi_write (C_ADDR ITR, x"AA", "ITR : Set interrupts"); o
- Positive acknowledge
_ : If wanted
2000.0 ns Check Interrupt trigger clear mechanism
___ - Alert message
110.0 ns check value() => OK, for std logic '0'. irg2cpu default and mismatch naport
727.5 ns check stable() => OK. Stable at 0. Stable irg2cpu - Alert count and ctrl
1060.0 ns Pulsed to 'l'. Set IRQ source for clock period
1117.5 ns await value(std logic 1, 0 ns, 20 ns) => OK. Interrupt expected
2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

7 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

UVVM Utility Library
for simple and advanced testbenches

= check_stable(), await_stable()

= clock_generator(), adjustable_clock_generator()
= random(), randomize()

= gen_pulse()

= block_flag(), unblock_flag(), await_unblock_flag()
= await_barrier()

= enable_log_msg(), disable_log_msg()

= to_string(), fill_string(), to_upper(), replace(), etc...
= normalize_and_check()

= set _log_file_name(), set_alert_file_name()

= wait_until_given_time_after_rising_edge()

= etc...

8 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

AXI-stream - BFM based TB

BFM based Testbench

G_main (test-sequencer))

axistream transmit(data, ...)
axistream receive (data,...)
axistream expect(data, ...)

)

clock_generator

DUT
AXIS R FIFO _ AXIS
slave master

No test harness (for simplicity)

Sequencer has direct access to DUT signals
* Thus BFMs from p_main can also see the DUT signals

BFMs are sequential procedures running in sequence in p_main.

UVVM - An intro to world's #1 verif. meth.

£ EmLogic

Resulting transcript +Debug

Note: Removed Prefix and Scope to show on a single line.

1 axistream transmit(v_byte array, msg, clk, m _axis); \
ID BFM 106.0 ns axistream transmit(3B)=> Tx DONE.
- <
axistream expect(v_exp array(0 to 2), "", clk, s_axis);
ID BFM 122.0 ns axistream expect(3B)=> OK, received 3B.
_ J

/May add more info for debugging

enable log msg(ID PACKET INITIATE) ;

enable log msg(ID PACKET DATA) ;

O O O o o

ns
ns
ns
ns
ns

axistream transmit (3B)=>
axistream transmit (3B)=>
axistream transmit (3B)=>
axistream transmit (3B)=>
axistream transmit (3B)=>

Tx
Tx
Tx
Tx

x"00", byte# 0.
x"01", byte# 1.
x"02", byte# 2.
DONE .

ID PACKET INITIATE 52.
ID PACKET DATA 52.
ID PACKET DATA 68.
ID PACKET DATA 82.
KID_PACKET_COMPLETE 106.

May add similar debugging info for data reception

10 UVVM - An intro to world's #1 verif. meth.

[? EmLogic

Advanced BFM usage - in simple TB

tkeep, tuser, tlast,

= May utilise more of the protocol: tstrb. tid. tdest

= May define different widths

= May configure behaviour:
* Set maximum wait cycles
* May set to match data exact or std_match
* May set byte endianness (for SLV larger than data width)
4 ®* May set to de-assert tvalid some cycles (randomly or fixed)

®* May set to de-assert tready some cycles (randomly or fixed)

°* And more...
\Have enabled lots of bug detection in users' AXI stream interfaces/

) Word index during which the Master BFM shall deassert
valid low at word num . . -
- - - - valid while sending a packet.

valid low duration Number of clock cycles to deassert valid.

valid low multiple random_ prob

Similar for ‘ready’

valid low _max random duration

11 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

What if we need to check the DUT
for simultaneous activity?

BFM based Testbench

p_main (test-sequencer)

axistream transmit(data, ...)
axistream receive (data,...)
axistream expect(data, ...)

VVC

BFMs are great for simple testbenches

Dedicated procedures in a simple package
Just reference and call from a process

BUT

A process can only do one thing at a time
- Either execute that BFM

- Or execute another BFM

- Or do something else

12

UVVM - An intro to world's #1 verif. meth.

clock_generator

DUT
- ~ VVC
AXIS R FIFO _ AXIS
slave master

To do more than one thing:

- Need multiple "threads"

- Could use multiple processes
Need inter process communication

- Leads to chaos — as for design

- Need an entity (or component)
(VC = Verification Component)

- Need a defined protocol

£ EmLogic

VVC: VHDL Verification Component

-

Interpreter

- Is command for me?
- Is it to be queued?

- If not:
Case on what to do

~

/

SBI_VVC

A

Command

y

-

Executor

- Fetch from queue

- Case on what to do
- Call relevant BFM(s)

Queue

Testcase

Sequencer

& Execute transaction

N

~

/

SBI_VVC

]

13 UVVM - An intro to world's #1 verif. meth.

A EmLogic

AXI-stream - VVC based TB (1)

VVC based Testbench

p_main
(test-sequencer)

=

axis..._tx(target, data, .
axis..._rx(target, data, .

)i
)]

4

B T T T T T T e —"

VVC based Test harness

Clock-Gen

» DUT
VVC
AXI4- AXIS || HEo | AXIS
Stream » slave master
Master VVC

AXI4-
Stream
Slave VVC

axistream_transmit(target, data, ...);
axistream_expect(target, data, ...);

~ clock_generator

BFM based Testbench

/S p_main
(test-sequencer) DUT
;'a-;(is..._tx(data,)} AXIS FIFO AXIS
i . > —>
axis..._rx(data, ...); HEve master
A 4
14 UVVM - An intro to world's #1 verif. meth.

£ EmLogic

VVC: Easy to extend & modify

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

Interpreter *_VVC Executor
- Is command for me? - Fetch from queue
- Is it to be queued? — <«——=— - Case on what to do
Command
- If not: Queue - Call relevant BFM(s)
Case on what to do & Execute transaction

Bit-rate checker
Frame-rate checker

Gap checker

Checkers are better included as parallel processes.

ic
VVC architecture allows simple inclusion and control :

VVCs: Extended

- Easy to handle split transactions
- Easy to handle out of order execution

a N a)

Interpreter * VYVC Executor
- Is command for me? - Fetch from queue
- Is it to be queued? «— <« - Case on what to do
Command
- If not: -
Queue Call relevant BFM(s) L

K& Execute transaction/

!

Queue

}

[Response-Executor

Case on what to do
_ " J

| Multi-thread interface handling is better controlled as a pipeline
VVC architecture allows simple inclusion - with queuing and control yic

| => Allows overview to be kept - for something that normally creates chaos...

VVC Advantages ™ Iisarchitecture

- Command structure

Simultaneous activity on multiple interfaces
Encapsulated - Reuse at all levels

Queue —-> May initiate multiple high level commands
Local Sequencers for predefined higher level commands
Only in UVVM VVC(s:

18

UNIQUE: Control all VVCs from a single sequencer!

May insert delay between commands - from sequencer
- The only system to target cycle related corner cases

Simple handling of split transactions and out of order protocols
Common commands to control VVC behaviour

Simple synchronization of interface actions — from sequencer
May use Broadcast and Multicast

Better Overview, Maintenance, Extensibility and Reuse

UVVM - An intro to world's #1 verif. meth. £ Em LogiC

VVCs: Too advanced??? -

Advanced functionality is great when needed, but what if not???

- If using an existing VVC, just ignore it. Use it out of the box — without the extras.
- If making your own VVC, don't include the advanced stuff
Skip it in the VVC generator, or don't include it if you copy the architecture.

-

~N

-

~

Interpreter * VYVC Executor
- Is command for me? - Fetch from queue
- Is it to be queued? — «——» - Case on what to do
Command
- If not: (:Queue - Call relevant BFM(s)
kCase on what to do j \& Execute transaction/"
!
N\ (— D
Scoreboard Bit-rate checker Queue
- Transaction . w I
| Info Frame-rate checker)
f Response-Executor
| CR+FC ~ Gap checker [))
o N\
19 UVVM - An intro to world's #1 verif. meth.

£ EmLogic

Simplicity where needed the most

VVC based Testbench

VVC based Test harness

p_main

(test-sequencer) CIOS:;SE" »| DUT
ggis..._tx(target, data, ...); AXI4- AXIS AXIS

axis..._rx(target, data, ...); Stream

Master VVC

slave

A

FIFO

master

TB with harness

v

AXI4-
Stream
Slave VVC

VVCs

Test sequencer

axistream transmit (AXISTREAM VVCT,0, v _data array, msqg);

axistream expect (AXISTREAM VVCT,1l, v_exp array, "Expecting **** ");

Totalt Workload percentages for various scenarios

| | Project A : : :
I Prm.ec Test sequencer is by far the most time consuming
roject B . . .
] Prolect C = The most important to simplify
E— = Especially for medium to complex DUTs
| Project D

Not investing in a good architecture = Test sequencer time may increase a lot

20 UVVM - An intro to world's #1 verif. meth.

£ EmLogic

Lots of free UVVM BFMs and VVCs

21

AXI4-lite

AXI4 Full

AXI-Stream Transmit and Receive
UART Transmit and Receive

SBI

SPI Transmit and Receive

I2C Transmit and Receive

GPIO

Avalon MM

Avalon Stream Transmit and Receive
RGMII Transmit and Receive
GMII Transmit and Receive
Ethernet Transmit and Receive
Wishbone

Clock Generator

Error Injector

UVVM - An intro to world's #1 verif. meth.

All:

- Free

- Open Source

- Well documented

- Example Testbenches

The largest collection
of
VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the corresponding BFM
Allows:

- Simultaneous interface handling
- Synchronization of interfaces

- Skewing between interfaces

- Additional protocol checkers

- Local sequencers

- Activity detection

- Simple reuse between projects

£ EmLogic

Advanced scoreboard-based TB

VVC based Testbench | VVC based Test harness

p_main
(test-sequencer)

)
)}

axis..._tx(target, data,
axis..._rx(target, data,

%&\M

d-esa

AXl4- Stream
Scoreboard

¢
L
N
n
Clock-Gen |=
2 mm
VVC N
..
AXI4- ¢
Stream

Master VVC

axistream transmit (AXISTREAM VVCT,0, v_data array, msqg);

s

A

AXI4-
Stream
Slave VVC

=
=
B e e ey

=
axistream_receivel (AXISTREAM VVCT,1, v_data_ array, "Checking via SB");

Model and Scoreboard allow functionality to be removed from test sequencer.
= Simplifies both overview and test sequencer

22

UVVM - An intro to world's #1 verif. meth.

£ EmLogic

=

(=
D
7
o

s

Watchdogs

Simple WD Inside Util

WatChdo . Activity Watchdog.
watchdog_timer(watchdog_ctrl, timeout, [alert_level, [msg]]) y) ’Y '
extend_watchdog(watchdog_ctrl, [time_extend]) ..’ o S _‘I.. .
reinitialize_watchdog(watchdog_ctrl, timeout) WD ‘." “‘)"> DI el S .) 'o‘
terminate_watchdog(watchdog_ctrl) ‘.““ 5 RN .
A . ~ % | SBIL_SB
) R . EN 2
A,’ ‘. : - A 'y I
- — | UART_WC [«———» UART |« > SBI [le— SBI_VVC
Seq. r ~ -
A .| Some func. [~ ?
VVC? i Ve
—/
Activity WD VVCs and UVVM Apply both concurrently

activity watchdog(timeout, num exp vvc);

Watchdogs allow a simpler test sequencer and better overview

23 UVVM - An intro to world's #1 verif. meth.

£ EmLogic

A good architecture allows
better understanding at all levels

VVC based Testbench | VVC based Test harness Interpreter *_VvC Executor
DUT [AX14- Stream - Is command for me? - Fetch from gqueue
gunt® Model foemmsmmm > .
ot Scoreboard - Is it to be queued? — 4——-| - Case on what to do
. 2 Command
) K . - If not: Queue - Call relevant BFM(s)
p_main Clock-Gen | ° BT, = Case on what to do & Execute transaction
(test-sequencer) e :- \\\ E I
axis..._tx(target, data, ...); PR AXIS AXIS AXIL Bit-rate checker Queue
axis..._rx(target, data, ...); v | T T | g
F-oA’| Stream =i AR Stream Frame-rate checker
Master VWC| | Slave VVC Response-Executor
\\ ______ _ 7 Gap checker
\

- Standard Interface \ - Standard VVC internal \
- Standard Protocol

- Standard common commands architecture
: - Standard VVC control of checkers
- Standard Status interface

- Standard Config interface : gtgggg;g ﬂ;ﬁgwnggsgfstem

- Standard handling of multiple VVCs multi-threaded interfaces

- Standard VVC synchronization - Standard debug support
kStandard multicast/broadcast / \ /

Simplification F for VVCs from different users will work together

Users know how VVCs behave and how any test harness will work

24 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

The full picture (1)

Is this too much? Too many VIP components? Too much structure?

Testbench
)
Test Test harness
Seq.
Ethernet_SB || Ethernet el Ethernet L 3l Fthernet_sB
— VVC VVC
A
A
SBI_SB <« SBI_VVC GMII_VVC » GMIl_SB
UART_SB |« UART_VVC SPI_VWC |e>» SPI_SB
éError Injector§ UART Monitor Activity WD WD timer
S

25 UVVM - An intro to world's #1 verif. meth. £ EmLoglc

The full picture (2)

VVCs are needed to check multiple interfaces simultaneously

Testbench
)
Test Test harness
Seq.
Ethernet_SB || Ethernet el Ethernet L 3l Fthernet_sB
— VVC VVC
SBI_SB <«» SBI_VVC GMII_VVC » GMII_SB
UART_SB |<«p UART_VVC SPI_VWC | SPI_SB
éError Injector§ UART Monitor Activity WD WD timer
—_——

26 UVVM - An intro to world's #1 verif. meth. £ EmLoglc

The full picture (3)

Removing VIPs =

Putting Yainat il o'sfiplinyd tedb8@2Quencer
- only very unstructured, less overview, not maintainable, not very reusable

Testbench
4 Test Test harness
Seq.
Ethernet_SB |« Ethernet TEEE Ethernet lg of Fthernet_sB
— VVC VVC -
A
=
- | i SBI SB |« SBI_VVC GMII_VVC » GMII_SB
o = _
Oro
UART_SB |« UART_VVC SPI_VVC | SPI_SB
| I(=
D IIIIIIIIIIIIIIIIII
\ / o :Error Injector UART Monitor Activity WD WD timer

Debugging is much easier with a good architecture
(25% of development, acc. to Wilson Research 2020 survey)

27 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

Testbench examples?

= Available as example testbenches:

* Demo TBs - from main UVVM repo on Github:
+ UART, Ethernet, IRQC, Scoreboard, Error injector, Spec_cov

®* Maintenance TBs - from UVVM_Supplementary on Github:
+ All VIPs

= May use examples as starting point for your TBs

28 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

The three main development areas for adv. TBs
vs structure and efficiency evaluations

The central sequencer

Always by far the most time consuming

Massively simplified (cmmd + sync)

Even a SW designer can read it — and write it

Any number of VVCs easily controlled

Huge time saving where it matters the most

Test harness

* Dead simple

* Anyone can understand it

* Anyone can understand the interaction

Verification Components

TB

Testcase
Sequencer

Test-narness

UART_RX_VVC

UART_TX_VVC

=
[T
n

.

29 UVVM - An intro to world's #1 verif. meth.

More complex than just a BFM
or a simple model (Unit with BFM)

Far more functionality

(common cmds +q +synchronization
+multi/broadcast +skewing +trans.info
+checkers ++++)

Simplifies complex protocols
significantly (BFM++)

Allows really simple test harness

Yields a huge improvement for
testcase writers

Significantly saves total verif time
30 min from BFM to VVCI!!!

£ EmLogic

Keeping the overview

- May use any number of VVCs

- May use any number of instances of each VVC type

- May control them all simultaneously — and also control command delays

- May control all from a single test sequencer (or two — or more)

- Get total overview by looking at one file (process) of sequential commands only

30

FPGA
VVC | PIF uart | VVC
vVvC | SPI DMA|| P2 | VVC
Test vve | P3 intr || P1 | VVC
SE(. :| ctrl
VVC |ETH ETH | VVC

UVVM - An intro to world's #1 verif. meth. £ Em LogiC

UVVM - World-wide #1

Design Projects

FPGA Verification Methodologies, world-wide, all languages

« Number 1 world-wide for VHDL verification *1

« Number 1 in Europe, indep. of language *1
Number 2 world-wide, indep. of language

By far the fastest growing, indep. of language™

(VHDL is used by >50% of all FPGA designers)

50%

40%

0o UVVM
100% up Why?
in 2 years
20%
- ‘ I
0%
L
< R Y
£ o) \) ® O
o R Xy & & o K o\
W & 3 P & N & &
& & & * & ¥ & &
?"" (5\0 6\ (¥4 (o4 &é
&
&

®2012 =2016 = 2020
* According to Wilson Research, per Sept. 2020 ** Multiple answers possible

UVVM enables Quality and Efficiency

\ (s

%/

Z=

-
7

THE DESIGN VERIFICATION COMPANY

{oesa ALDEC) I;\ SIEMENS [EEE

DOULOS

Structure & | simplicity
Architecture
/] Overview, Readability \\

Modifiability, Maintainability,
Extensibility

Debuggability

N Reusability

IEEE SA OPEN

UVVM System

Utility BFMs Constr. Rand.

Library TLM Functional
Transactions | Coverage
Watchdogs| VVCs S[(J:eC|f|cat|on
overage

Monitor Scoreboard | I_Erro_r
njection

AXI-light, AXI-stream, Avalon MM,
Avalon Stream, UART, SPI, GPIO, I2C,
SBI, GMII, RGMII, Ethernet, ...

Huge improvement potential in most projects

Save 100-1000 hours in low-medium complexity projects

Save 500-3000 hours in medium to high complexity projects

+ TTM
+ MTBF
+ LCC

32 UVVM - An intro to world's #1 verif. meth.

£ EmLogic

Other presentations and tutorials

= 09:45 today: Presentation
UVVM Enhanced Randomisation and Functional Coverage — and how
this will help you make a better VHDL testbenches

= 09:00 - 10:30 tomorrow: Tutorial
Making a structured VHDL testbench — for beginners

= 11:15 - 12:45 tomorrow: Tutorial
Making an advanced testbench using models, scoreboards,
verification components, high-level transactions and more

See also https://emlogic.no/courses/ for our courses
4-6 October, Germany, Frankfurt ? : 3-day VHDL Verification & UVVM
8-9 November, Germany, Frankfurt ? : 2-day FPGA and Digital ASIC Design

33 UVVM - An intro to world's #1 verif. meth. £ Em LogiC

https://emlogic.no/courses/

Thank you for attending

UVVM enables Quality and Efficiency

IEEE SA }pEi

Cesa ALDEC) Je\ SIEMENS

DOULOS
Structure & simplicity UVVM System
Architecture e BFMs [Constr. Rand.
[ovmmmmmntiy | |ty [T | Funciond
| Modifiability, Maintainability, l Watchdogs, wvcs |-pecification
Extensibility Cogerage
& rror
Monitor Scoreboard -
| Debuggability | Injection
AXI-light, AXI-stream, Avalon MM,
- Avalon Stream, UART, SPI, GPIO, 12C,
| GEtE Ly | SBI, GMII, RGMII, Ethernet, ..

Huge improvement potential in most projects

Save 100-1000 hours in low-medium complexity proiects I :;rTbI;F
Save 500-3000 hours in medium to high complexity proiects + LCC

[]
UVVM - An intro to world's #1 verif. meth. é E I I I Log I C

