
EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

UVVM
– An introduction to

the world’s #1
VHDL verification methodology

FPGA Conference Europe, 5 July 2022

▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up
• January 2021: 1 person

• July 2022: → 23 designers (SW:8, HW:3, FPGA:10) - And still growing…

▪ Continues the legacy from

• All previous Bitvis technical managers are now in EmLogic

• Verification IP and Methodology provider

• Course provider within FPGA Design and Verification

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)

▪ A potential partner for ESA projects for European companies
• Increased opportunities due to Norway's low geo return

UVVM

UVVM - An intro to world's #1 verif. meth.2

▪ 'The Design Warrior’s Guide to FPGAs' (by Clive "Max" Maxfield) :

• “SW designers look at other code with horror”

• “RTL sets new standards for awfulness”

• “The majority of designs are almost unintelligible to another designer”

• My experience: RTL is heaven compared to testbenches…

"Be afraid, be very afraid"

UVVM - An intro to world's #1 verif. meth.3

Half the development time
on Verification

Nearly half the verification time
on Debugging

Quality and Efficiency

Solution:

Architecture

Simplicity - where needed the most

Major Challenge:

Awareness

➔ Prioritise the reader at all times

UVVM - An intro to world's #1 verif. meth.4

UVVM targets all of this

UVVM = Universal VHDL Verification Methodology

▪ VHDL Verification Library & Methodology

▪ Free and Open Source

▪ Very structured infrastructure and architecture

▪ Significantly improves Verification Efficiency

▪ Assures a far better Design Quality

▪ Recommended by Doulos for Testbench architecture

▪ ESA projects to extend the functionality

▪ IEEE Standards Association Open source project

▪ Included with various simulators

▪ Runs on GHDL

What is UVVM?

UVVM - An intro to world's #1 verif. meth.5

▪ Depending on DUT complexity
there are various architecture options, needs and levels

▪ But- there are mainly two main architectural approaches

1. No need to handle simultaneous activity on multiple interfaces

• For DUT with no contention issues, no cycle related corner cases, etc

➔ Need only a simple TB with a single test sequencer process

(using procedures and functions as needed, called from this process)

• Including simple extension on this with no complex cycle related corner
cases

 E.g. Additional processes to apply and fetch data for a simple data flow DUT

2. Need to control and/or check multiple interfaces simultaneously

• DUT has potential cycle related corner cases that need to be checked

➔ Need to run multiple threads (entities and/or processes) simultaneously

The main architectural needs for TBs

UVVM - An intro to world's #1 verif. meth.6

??

Example on test sequencer code
and transcript/log

log(ID_LOG_HDR, "Check Interrupt trigger clear mechanism");

check_value(irq2cpu, '0', "irq2cpu default inactive");

check_stable(irq2cpu, now – v_reset_time, "Stable irq2cpu");

gen_pulse(irq_source, '1', C_CLK_PERIOD, "Set IRQ source for clock period");

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD, "Interrupt expected");

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

2000.0 ns Check Interrupt trigger clear mechanism

--

110.0 ns check_value() => OK, for std_logic '0'. irq2cpu default inactive

727.5 ns check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns Pulsed to '1'. Set IRQ source for clock period

1117.5 ns await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

clock_generator(clk, GC_CLK_PERIOD);

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

clk gen

test
seque
ncer

Testbench

2000.0 ns Check Interrupt trigger clear mechanism

--

110.0 ns check_value() => OK, for std_logic '0'. irq2cpu default inactive

727.5 ns check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns Pulsed to '1'. Set IRQ source for clock period

1117.5 ns await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

UVVM - An intro to world's #1 verif. meth.7

All procedures with:

- Positive acknowledge
If wanted

- Alert message
and mismatch report

- Alert count and ctrl

▪ check_stable(), await_stable()

▪ clock_generator(), adjustable_clock_generator()

▪ random(), randomize()

▪ gen_pulse()

▪ block_flag(), unblock_flag(), await_unblock_flag()

▪ await_barrier()

▪ enable_log_msg(), disable_log_msg()

▪ to_string(), fill_string(), to_upper(), replace(), etc…

▪ normalize_and_check()

▪ set_log_file_name(), set_alert_file_name()

▪ wait_until_given_time_after_rising_edge()

▪ etc…

UVVM Utility Library
for simple and advanced testbenches

UVVM - An intro to world's #1 verif. meth.8

p_main (test-sequencer)
…
axistream_transmit(data, ...)

axistream_receive(data,...)

axistream_expect(data, ...)

…

▪ No test harness (for simplicity)

▪ Sequencer has direct access to DUT signals

• Thus BFMs from p_main can also see the DUT signals

▪ BFMs are sequential procedures running in sequence in p_main.

AXI-stream - BFM based TB

UVVM - An intro to world's #1 verif. meth.9

clock_generatorBFM based Testbench

Resulting transcript +Debug

UVVM - An intro to world's #1 verif. meth.10

axistream_transmit(v_byte_array, msg, clk, m_axis);

ID_BFM 122.0 ns axistream_expect(3B)=> OK, received 3B.

ID_BFM 106.0 ns axistream_transmit(3B)=> Tx DONE.

axistream_expect(v_exp_array(0 to 2), "", clk, s_axis);

May add more info for debugging

enable_log_msg(ID_PACKET_INITIATE); enable_log_msg(ID_PACKET_DATA);

ID_PACKET_INITIATE 52.0 ns axistream_transmit(3B)=>

ID_PACKET_DATA 52.0 ns axistream_transmit(3B)=> Tx x"00", byte# 0.

ID_PACKET_DATA 68.0 ns axistream_transmit(3B)=> Tx x"01", byte# 1.

ID_PACKET_DATA 82.0 ns axistream_transmit(3B)=> Tx x"02", byte# 2.

ID_PACKET_COMPLETE 106.0 ns axistream_transmit(3B)=> Tx DONE.

May add similar debugging info for data reception

Note: Removed Prefix and Scope to show on a single line.

Similar for ‘ready’

▪ May utilise more of the protocol:

▪ May define different widths

▪ May configure behaviour:

• Set maximum wait cycles

• May set to match data exact or std_match

• May set byte endianness (for SLV larger than data width)

• May set to de-assert tvalid some cycles (randomly or fixed)

• May set to de-assert tready some cycles (randomly or fixed)

• And more…

Advanced BFM usage - in simple TB

UVVM - An intro to world's #1 verif. meth.11

tkeep, tuser, tlast,

tstrb, tid, tdest

valid_low_at_word_num
Word index during which the Master BFM shall deassert

valid while sending a packet.

valid_low_duration Number of clock cycles to deassert valid.

Have enabled lots of bug detection in users' AXI stream interfaces

valid_low_multiple_random_prob

valid_low_max_random_duration

UVVM - An intro to world's #1 verif. meth.12

VVC

What if we need to check the DUT
for simultaneous activity?

p_main (test-sequencer)
…
axistream_transmit(data, ...)

axistream_receive(data,...)

axistream_expect(data, ...)

…

BFM based Testbench clock_generator

- BFMs are great for simple testbenches

Dedicated procedures in a simple package

Just reference and call from a process

- BUT

A process can only do one thing at a time

- Either execute that BFM

- Or execute another BFM

- Or do something else

- To do more than one thing:

→ Need multiple "threads"

→ Could use multiple processes

Need inter process communication

→ Leads to chaos – as for design

→ Need an entity (or component)

(VC = Verification Component)

→ Need a defined protocol

VVC

UVVM - An intro to world's #1 verif. meth.13

VVC: VHDL Verification Component

SBI_VVC

Testcase

Sequencer SBI_VVC

UART (DUT)

RX
Other Ports

Clocks

Bus interface

TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

UVVM - An intro to world's #1 verif. meth.14

AXI-stream - VVC based TB (1)

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

axistream_transmit(target, data, …);
axistream_expect(target, data, …);

*_VVC

VVC: Easy to extend & modify

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

- Easy to add local sequencers

- Easy to add checkers/monitors/etc

FPGA Verification Architecture Optimization 16 UVVM - An intro to world's #1 verif. meth.16 Checkers are better included as parallel processes.
VVC architecture allows simple inclusion and control

*_VVC

VVCs: Extended

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Queue

Response-Executor

- Easy to handle split transactions
- Easy to handle out of order execution

DUT

UVVM - An intro to world's #1 verif. meth.17

➔ Allows overview to be kept – for something that normally creates chaos…

Multi-thread interface handling is better controlled as a pipeline

VVC architecture allows simple inclusion – with queuing and control

▪ Simultaneous activity on multiple interfaces

▪ Encapsulated → Reuse at all levels

▪ Queue → May initiate multiple high level commands

▪ Local Sequencers for predefined higher level commands

▪ Only in UVVM VVCs:

• UNIQUE: Control all VVCs from a single sequencer!

• May insert delay between commands – from sequencer
→ The only system to target cycle related corner cases

• Simple handling of split transactions and out of order protocols

• Common commands to control VVC behaviour

• Simple synchronization of interface actions – from sequencer

• May use Broadcast and Multicast

VVC Advantages

Better Overview, Maintenance, Extensibility and Reuse

Due to: - VVC architecture
- TB architecture
- Command structure

UVVM - An intro to world's #1 verif. meth.18

*_VVC

VVCs: Too advanced???

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

Advanced functionality is great when needed, but what if not???

Clock

Generation

Testcase

Sequencer

SBI_VVC

UART_TX_VVC

UART
(DUT)

R

X

Other

Ports

Clocks

Bus

interfac

e
T

X

UART_RX_VVCUART_RX_VVC

Baudrate
Checker

DUT

Scoreboard

Transaction
Info

CR + FC

- If using an existing VVC, just ignore it. Use it out of the box – without the extras.
- If making your own VVC, don't include the advanced stuff

Skip it in the VVC generator, or don't include it if you copy the architecture.

UVVM - An intro to world's #1 verif. meth.19

Simplicity where needed the most

TB with harness

VVCs

Test sequencer

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_expect(AXISTREAM_VVCT,1, v_exp_array, "Expecting **** ");

Totalt Workload percentages for various scenarios

Project A

Project B

Project C

Project D

Not investing in a good architecture ➔ Test sequencer time may increase a lot

Test sequencer is by far the most time consuming
➔ The most important to simplify
➔ Especially for medium to complex DUTs

UVVM - An intro to world's #1 verif. meth.20

• AXI4-lite

• AXI4 Full

• AXI-Stream Transmit and Receive

• UART Transmit and Receive

• SBI

• SPI Transmit and Receive

• I2C Transmit and Receive

• GPIO

• Avalon MM

• Avalon Stream Transmit and Receive

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone

• Clock Generator

• Error Injector

Lots of free UVVM BFMs and VVCs

All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection
of

VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the corresponding BFM
Allows:
- Simultaneous interface handling
- Synchronization of interfaces
- Skewing between interfaces
- Additional protocol checkers
- Local sequencers
- Activity detection
- Simple reuse between projects

UVVM - An intro to world's #1 verif. meth.21

Advanced scoreboard-based TB

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

DUT
Model

AXI4- Stream
Scoreboard

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_receive(AXISTREAM_VVCT,1, v_data_array, "Checking via SB");

Model and Scoreboard allow functionality to be removed from test sequencer.

➔ Simplifies both overview and test sequencer

UVVM - An intro to world's #1 verif. meth.22

Watchdogs

Some func.

UART SBI

SBI_SB

Seq.

VVC?
VVC?

SBI_VVCUART_VVC

DUT model

Simple WD Inside Util

Activity WD VVCs and UVVM

WD

Activity Watchdog.

activity_watchdog(timeout, num_exp_vvc);

Apply both concurrently

Watchdogs allow a simpler test sequencer and better overview

UVVM - An intro to world's #1 verif. meth.23

All standardised for UVVM VVCs and Test harnesses and Test sequencers

A good architecture allows
better understanding at all levels

- Standard Interface
- Standard Protocol
- Standard common commands
- Standard Status interface
- Standard Config interface
- Standard handling of multiple VVCs
- Standard VVC synchronization
- Standard multicast/broadcast

- Standard VVC internal
architecture

- Standard VVC control of checkers
- Standard queuing system
- Standard handling of

multi-threaded interfaces
- Standard debug support

Simplification

Users know how VVCs behave and how any test harness will work

VVCs from different users will work together

UVVM - An intro to world's #1 verif. meth.24

??

DUT

Ethernet Switch

The full picture (1)

UVVM - An intro to world's #1 verif. meth.25

GMII_SB

Test
Seq.

GMII_VVCSBI_VVC

modelEthernet
VVC

Ethernet
VVC

Ethernet_SB

Activity WD

Ethernet_SB

SBI_SB

WD timerError Injector UART Monitor

SPI_SBSPI_VVCUART_VVCUART_SB

Test harness

Testbench

Is this too much? Too many VIP components? Too much structure?

DUT

Ethernet Switch

The full picture (2)

UVVM - An intro to world's #1 verif. meth.26

GMII_SB

Test
Seq.

GMII_VVCSBI_VVC

modelEthernet
VVC

Ethernet
VVC

Ethernet_SB

Activity WD

Ethernet_SB

SBI_SB

WD timerError Injector UART Monitor

SPI_SBSPI_VVCUART_VVCUART_SB

Test harness

Testbench

VVCs are needed to check multiple interfaces simultaneously

DUT

Ethernet Switch

The full picture (3)

UVVM - An intro to world's #1 verif. meth.27

GMII_SB

Test
Seq.

GMII_VVCSBI_VVC

modelEthernet
VVC

Ethernet
VVC

Ethernet_SB

Activity WD

Ethernet_SB

SBI_SB

WD timerError Injector UART Monitor

SPI_SBSPI_VVCUART_VVCUART_SB

Test harness

Testbench

Removing VIPs ➔
Putting same functionality into test sequencer

- only very unstructured, less overview, not maintainable, not very reusable

Test
Seq.

What if we “simplify” this???

Debugging is much easier with a good architecture
(25% of development, acc. to Wilson Research 2020 survey)

▪ Available as example testbenches:

• Demo TBs - from main UVVM repo on Github:

 UART, Ethernet, IRQC, Scoreboard, Error injector, Spec_cov

• Maintenance TBs - from UVVM_Supplementary on Github:

 All VIPs

▪ May use examples as starting point for your TBs

Testbench examples?

UVVM - An intro to world's #1 verif. meth.28

The three main development areas for adv. TBs
vs structure and efficiency evaluations

Verification Components

• More complex than just a BFM
or a simple model (Unit with BFM)

• Far more functionality
(common cmds +q +synchronization

+multi/broadcast +skewing +trans.info

+checkers ++++)

• Simplifies complex protocols
significantly (BFM++)

• Allows really simple test harness

• Yields a huge improvement for
testcase writers

• Significantly saves total verif time

• 30 min from BFM to VVC!!!

Test harness

• Dead simple

• Anyone can understand it

• Anyone can understand the interaction

The central sequencer

• Always by far the most time consuming

• Massively simplified (cmd + sync)

• Even a SW designer can read it – and write it

• Any number of VVCs easily controlled

• Huge time saving where it matters the most

UVVM - An intro to world's #1 verif. meth.29

VVC

VVC

VVC

VVC

VVC

VVC

VVC

VVC

Keeping the overview

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

Test
seq.

FPGA

- May use any number of VVCs

- May use any number of instances of each VVC type

- May control them all simultaneously – and also control command delays

- May control all from a single test sequencer (or two – or more)

- Get total overview by looking at one file (process) of sequential commands only

UVVM - An intro to world's #1 verif. meth.30

31 UVVM - An intro to world's #1 verif. meth.

UVVM – World-wide #1

2
0
1
8

UVVM
100% up
in 2 years

* According to Wilson Research, per Sept. 2020

FPGA Verification Methodologies, world-wide, all languages

• Number 1 world-wide for VHDL verification *1

• Number 1 in Europe, indep. of language *1

• Number 2 world-wide, indep. of language
• By far the fastest growing, indep. of language*1

Why?

(VHDL is used by >50% of all FPGA designers)

UVVM enables Quality and Efficiency

Save 100-1000 hours in low-medium complexity projects

Save 500-3000 hours in medium to high complexity projects

Huge improvement potential in most projects

+ TTM
+ MTBF
+ LCC

UVVM - An intro to world's #1 verif. meth.32

▪ 09:45 today: Presentation
UVVM Enhanced Randomisation and Functional Coverage – and how
this will help you make a better VHDL testbenches

▪ 09:00 – 10:30 tomorrow: Tutorial
Making a structured VHDL testbench – for beginners

▪ 11:15 – 12:45 tomorrow: Tutorial
Making an advanced testbench using models, scoreboards,
verification components, high-level transactions and more

See also https://emlogic.no/courses/ for our courses

4-6 October, Germany, Frankfurt ? : 3-day VHDL Verification & UVVM

8-9 November, Germany, Frankfurt ? : 2-day FPGA and Digital ASIC Design

Other presentations and tutorials

UVVM - An intro to world's #1 verif. meth.33

https://emlogic.no/courses/

Thank you for attending

UVVM - An intro to world's #1 verif. meth.34

