
EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

Get the right FPGA quality
through

Efficient Verification
and Requirements Tracking

The leading FPGA design centre in Norway and Scandinavia (www.emlogic.no/leading)

(by Espen Tallaksen, CEO EmLogic)

SEFUW 2025, ESTEC

▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up
• January 2021: 1 person

• March 2025: → 48 persons (SW, HW, FPGA:21, DSP)

▪ Continues the legacy from

• All previous Bitvis technical managers are now in EmLogic

• Verification IP and Methodology provider

• Course provider within FPGA Design and Verification

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)

▪ A potential partner for ESA projects for European companies

• Increased opportunities due to Norway's low geo return

UVVM

Get the right FPGA quality through Spec.Cov.2

Get the right FPGA quality through Spec.Cov.

What is UVVM?

3

UVVM = Universal VHDL Verification Methodology

▪ VHDL Verification Library & Methodology

▪ Free and Open Source

▪ Used by >35% of all FPGA VHDL designers in Europe

▪ Results in a very structured testbench architecture

▪ Significantly improves Verification Efficiency

▪ Assures a far better Design Quality

▪ Recommended by Doulos for Testbench architecture

▪ ESA projects to extend the functionality

▪ IEEE Standards Association Open source project

▪ Runs on any VHDL-2008 compliant simulator

▪ ESA UVVM projects were initiated in order to:

• Solve challenges on verification of FPGAs and IP

• Provide the best possible VHDL verification methodology

 For both suppliers to ESA – and the FPGA/VHDL community in general

The ESA projects

ESA UVVM 1: 2017-2019

ESA UVVM 2: 2020-2022
• Scoreboards
• Monitors
• Error injection
• Local sequencers
• Transaction info
• Watchdogs
• Hierarchical VVCs
• Specification

Coverage

• Enhanced
Randomisation

• Optimised
Randomisation

• Functional
Coverage

• Extensions

ESA UVVM 3: 2024-2025
• Completion detection
• Detection of unwanted

interface activity
• SV-extended Randomisation
• More to be announced

In parallel with "normal" extensions and maintenance

Get the right FPGA quality through Spec.Cov.4

What enables Quality and Efficiency

UVVM targets all of this

▪ Huge improvement potential for more structured FPGA verification

Get the right FPGA quality through Spec.Cov.5

log(ID_LOG_HDR, "Check Interrupt trigger clear mechanism");

check_value(irq2cpu, '0', "irq2cpu default inactive");

check_stable(irq2cpu, now – v_reset_time, "Stable irq2cpu");

gen_pulse(irq_source(3), '1', C_CLK_PERIOD, "Set IRQ source 3 for clock period");

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD, "Interrupt expected");

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

Example on test sequencer code
and transcript/log

2000.0 ns Check Interrupt trigger clear mechanism

--

 110.0 ns check_value() => OK, for std_logic '0'. irq2cpu default inactive

 727.5 ns check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns Pulsed to '1'. Set IRQ source for clock period

1117.5 ns await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

clock_generator(clk, GC_CLK_PERIOD);

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

clk gen

test
seque
ncer

Testbench

2000.0 ns Check Interrupt trigger clear mechanism

--

 110.0 ns check_value() => OK, for std_logic '0'. irq2cpu default inactive

 727.5 ns check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns Pulsed to '1'. Set IRQ source 3 for clock period

1117.5 ns await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

All procedures with:

- Positive acknowledge
 If wanted

- Alert message
 and mismatch report

- Alert count and ctrl

Get the right FPGA quality through Spec.Cov.6

Lot’s of free UVVM BFMs and VVCs

• AXI4-lite

• AXI4 Full

• AXI-Stream Transmit and Receive

• UART Transmit and Receive

• SBI

• SPI Transmit and Receive

• I2C Transmit and Receive

• GPIO

• Avalon MM

• Avalon Stream Transmit and Receive

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone

• Clock Generator

• Error Injector

All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection
of

VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the corresponding BFM
Allows:
- Simultaneous interface handling
- Synchronization of interfaces
- Skewing between interfaces
- Additional protocol checkers
- Local sequencers
- Activity detection
- Simple reuse between projects

Get the right FPGA quality through Spec.Cov.7

▪ Assure that all requirements in a specification have been verified

▪ Also known as Requirements coverage (or Req. tracking / traceability)

▪ Several similarities with functional coverage, but

• Most requirements cannot be marked as verified or covered just from
one or a few values.

• Most often involves multiple steps in a test sequence

 With checks of different values and responses during and after the sequence

• Application area and customers often require different reporting views

Specification Coverage

Get the right FPGA quality through Spec.Cov.8

▪ (Assure that all requirements in a specification have been verified)

1.Specify all requirements

2.Report coverage from test sequencer(s) (or other TB parts)

3.Generate summary report

Coverage per requirement

Test cases covering each requirement

Requirements covered by each Test case

Accumulate over multiple Test cases

Tracing the Requirements

Mandatory for Safety and Mission Critical (Strictly required by ESA)
Strongly recommended for good quality assurance
Expensive tools exist…

Requirements
Traceability

Matrix

Requirement Label Description

MOTOR_R1 The acceleration shall be ***
MOTOR_R2 The top speed shall be given by ***

MOTOR_R3 The deceleration shall be ***

MOTOR_R4 The final position shall be ***

Get the right FPGA quality through Spec.Cov.9

▪ Free solutions exist to report that a testcase finished successfully

• BUT - reporting that a testcase has finished
and accumulating finished testcases - is not sufficient

▪ What if multiple requirements are
covered by the same testcase?

• E.g. Moving/turning something to a to a given position
R1: Acceleration R2: Speed R3: Deceleration 4: Position etc..

▪ Generates various types of reports

Efficient Specification Coverage

TC1

TC2
TC3
TC4

R1

R2
R3

R4

TC1
R2 R3 R4R1VS

Requirements Traceability Matrix

Get the right FPGA quality through Spec.Cov.10

▪ UART

• Showing only 4 requirements for simplicity

▪ Starting with a single test case testing all requirements

Example case

Requirement
Label

Description

UART_REQ_1 The device UART interface shall accept a baud rate of 9600kbps.
UART_REQ_2 The device UART interface shall accept a baud rate of 19k2 bps.
UART_REQ_3 The device UART interface shall accept an odd parity
UART_REQ_4 The device reset shall be active low.

Get the right FPGA quality through Spec.Cov.11

Get the right FPGA quality through Spec.Cov.12

Inside the testcase sequencer:

initialize_req_cov(<testcase-name>,
<req_list-file>, <coverage_file>);

-- Test sequence to verify
UART_REQ_1 and UART_REQ_3

tick_off_req_cov("UART_REQ_1");
tick_off_req_cov("UART_REQ_3");

-- Test sequence to verify UART_REQ_2
tick_off_req_cov("UART_REQ_2");

-- etc

finalize_req_cov(VOID);

Introduction & Simple Case

1. Extract
requirements

Req.
Spec.

2. Implement
Testcase

Requirement list, CSV
UART_REQ_1, Baudrate 9k6
UART_REQ_2, Baudrate 19k2
UART_REQ_3, Odd parity
UART_REQ_4, Active low reset

Ext. Input Development flow File Examples File Syntax

3. Run Testcase

Testcase Coverage, CSV
UART_REQ_1, t_basic, PASS
UART_REQ_3, t_basic, PASS
UART_REQ_2, t_basic, PASS
UART_REQ_4, t_basic, PASS
SUMMARY, t_basic, PASS

Requirement list, CSV
<Req. Label>, <Description>
<Req. Label>, <Description>
……….

Testcase Coverage, CSV
<Req. Label>, <Testcase>, <test_status>
<Req. Label>, <Testcase>, <test_status>
……….

Simplified overview

4. Run specification
coverage
(Python script) Specification Coverage, CSV

Three different report formats
1. Req. vs minimum of covering

test cases
2. Req. vs all covering tcs
3. Test case vs reqs

Specification coverage: *.req_compliance_minimal/extended.csv
UART_REQ_1, tc_basic, COMPLIANT
UART_REQ_2, tc_basic, COMPLIANT
UART_REQ_3, tc_basic, COMPLIANT
UART_REQ_4, tc_basic, COMPLIANT

Specification coverage: *testcase_list.csv
tc_basic, PASS, UART_REQ_1 & UART_REQ_2 & UART_REQ_3 & UART_REQ_4 1 and 2 are the same if all tests

are included in a single testcase.

Aka: Partial coverage

▪ Normally – Any test can be run in any testcase

▪ For every single testcase:

• Inside testcase:
initialize_req_cov(), N * tick_off_req_cov(), finalize_req_cov()

• All use the same Requirement list

• Unique coverage file per test case – with testcase name included

▪ May have multiple testcases inside the same test sequencer

▪ After running all test cases:
Run Python script as before, but include all coverage files

Multiple testcases – simple usage

Get the right FPGA quality through Spec.Cov.13

▪ Each test case in VHDL generates a Partial Coverage File (CSV)

Multiple Testcases

Partial coverage
'partial_cov_tc_basic.csv'

TESTCASE_NAME: tc_basic

UART_REQ_1, tc_basic,PASS
UART_REQ_3, tc_basic,PASS

SUMMARY, tc_basic, PASS

Partial coverage
'partial_cov_tc_19k2.csv'

TESTCASE_NAME: tc_19k2

UART_REQ_2, tc_19k2,PASS

UART_REQ_3, tc_19k2,PASS

UART_REQ_4, tc_19k2,PASS

SUMMARY, tc_19k2, PASS

Partial coverage
'partial_cov_tc_reset.csv'

TESTCASE_NAME: tc_reset

UART_REQ_5,tc_reset,PASS

SUMMARY, tc_reset, PASS

*.req_compliance_minimal.csv
UART_REQ_1, tc_basic, COMPLIANT
UART_REQ_2, tc_19k2, COMPLIANT
UART_REQ_3, tc_19k2, COMPLIANT
UART_REQ_4, tc_19k2, COMPLIANT
UART_REQ_5, tc_reset, COMPLIANT

*. req_compliance_extended.csv
UART_REQ_1, tc_basic, COMPLIANT
UART_REQ_2, tc_19k2, COMPLIANT
UART_REQ_3, tc_basic & tc_19k2, COMPLIANT
UART_REQ_4, tc_19k2, COMPLIANT
UART_REQ_5, tc_reset, COMPLIANT

*.testcase_list.csv
tc_basic, PASS, UART_REQ_1 & UART_REQ_3
tc_19k2, PASS, UART_REQ_2 & UART_REQ_3 & UART_REQ_4
tc_reset, PASS, UART_REQ_5

Specification Coverage
Three different report format
1. Req. vs minimum of

covering test cases
2. Req. vs all covering tcs
3. Test case vs reqs

Not necessarily the best split into testcases for the UART, but illustrates the usage.

Get the right FPGA quality through Spec.Cov.14

What if a test fails?

t_19k2_cov (from t_19k2)
UART_REQ_2, t_19k2, PASS
UART_REQ_3, t_19k2, PASS
UART_REQ_4, t_19k2, PASS
SUMMARY, t_19k2, PASS

Specification coverage, CSV (1)
UART_REQ_1, t_basic, COMPLIANT
UART_REQ_2, t_19k2, COMPLIANT
UART_REQ_3, t_basic, COMPLIANT
UART_REQ_4, t_19k2, COMPLIANT

t_19k2_cov (from t_19k2)
UART_REQ_2, t_19k2, PASS
UART_REQ_3, t_19k2, PASS
UART_REQ_4, t_19k2, FAIL
SUMMARY, t_19k2, FAIL

All pass One or more fail

Specification coverage, CSV (1)
UART_REQ_1, t_basic, COMPLIANT
UART_REQ_2, check *.req_non_compliance.csv, NON_COMPLIANT
UART_REQ_3, check *.req_non_compliance.csv, NON_COMPLIANT
UART_REQ_4, check *.req_non_compliance.csv, NON_COMPLIANT

Partial coverage files

Coverage summary files

Caused by error in testcase

UART_REQ_2/3: Caused by failing testcase

UART_REQ_4: Because the requirement failed

Get the right FPGA quality through Spec.Cov.15

▪ May specify required testcase for any given requirement

▪ May specify that at least one of multiple testcases must pass
(If the others have not been executed. Cannot have any failed)

▪ May specify that a requirement is tested in multiple testcases

▪ May map requirements in one file to requirements in another

• Thus allowing reusable TBs with coverage included

• Also allows compound requirement to be split into multiple
more detailed requirements

▪ … and more features.
 See uvvm.github.io

Advanced spec. cov.

Get the right FPGA quality through Spec.Cov.16

Getting started with Spec. Cov
- A step-by-step demo

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

library uvvm_util;

context uvvm_util.uvvm_util_context;

library bitvis_vip_spec_cov;

use bitvis_vip_spec_cov.spec_cov_pkg.all;

▪ Start by including UVVM utility library and Spec.Cov

▪ Then we are ready to go…

• To write commands inside our testbench

Get the right FPGA quality through Spec.Cov.17

Get the right FPGA quality through Spec.Cov.18

Simple case – with no test cases specified

UART_REQ_1, Register defaults

UART_REQ_2, Transmit

UART_REQ_3, Receive

UART_REQ_4, Simultaneous TX & RX

UART_REQ_5, The 3 selected baud rates

- Two parameters only
- Testcase not specified

- Single testcase only
- All Reqs. Covered

log(ID_LOG_HDR, v_testcase & ": Checking Register defaults");

 --

 initialize_req_cov(v_testcase, C_REQ_LIST_FILE, C_PARTIAL_COV_FILE);

Requirements list: 'req_list.csv'

Simple case:
Coverage (1)

UART_REQ_1, Register defaults

UART_REQ_2, Transmit

UART_REQ_3, Receive

UART_REQ_4, Simultaneous TX & RX

UART_REQ_5, The 3 selected baud rates

log("Checking Reg Defaults");

 ***** Do all relevant checks;

 tick_off_req_cov("UART_REQ_1");

log(ID_LOG_HDR, tc_0: Checking Tx, Rx and Simultaneous Tx/RX");

log("Checking Transmit");

tick_off_req_cov("UART_REQ_2");

log("Checking Receive");

tick_off_req_cov("UART_REQ_3")

log("Checking Simultaneous Rx+Tx");

tick_off_req_cov("UART_REQ_4");

Get the right FPGA quality through Spec.Cov.19

Simple case:
Coverage (2)

UART_REQ_1, Register defaults

UART_REQ_2, Transmit

UART_REQ_3, Receive

UART_REQ_4, Simultaneous TX & RX

UART_REQ_5, The 3 selected baud rates

log("Checking All baudrates");

 tick_off_req_cov("UART_REQ_5");

log("Finished checking");

finalize_req_cov(VOID);
Partial coverage file
(simplified)

TESTCASE_NAME: tc_0

UART_REQ_1,tc_0,PASS

UART_REQ_2,tc_0,PASS

UART_REQ_3,tc_0,PASS

UART_REQ_4,tc_0,PASS

UART_REQ_5,tc_0,PASS

SUMMARY, tc_0, PASS

Get the right FPGA quality through Spec.Cov.20

Simple case:
Coverage summary

Partial coverage file

TESTCASE_NAME: tc_0

UART_REQ_1,tc_0,PASS

UART_REQ_2,tc_0,PASS

UART_REQ_3,tc_0,PASS

UART_REQ_4,tc_0,PASS

UART_REQ_5,tc_0,PASS

SUMMARY, tc_0, PASS

UART_REQ_1, Register defaults

UART_REQ_2, Transmit

UART_REQ_3, Receive

UART_REQ_4, Simultaneous TX & RX

UART_REQ_5, Required baud rates

*.req_compliance_minimal/
extended.csv

Requirement,Testcase,Compliance

UART_REQ_1,tc_0,COMPLIANT

UART_REQ_2,tc_0,COMPLIANT

UART_REQ_3,tc_0,COMPLIANT

UART_REQ_4,tc_0,COMPLIANT

UART_REQ_5,tc_0,COMPLIANT
Get the right FPGA quality through Spec.Cov.21

Simple case (using requirements):
But now with testcase specified

UART_REQ_1, Register defaults, tc_1

UART_REQ_2, Transmit, tc_2

UART_REQ_3, Receive, tc_2

UART_REQ_4, Simultaneous TX and RX, tc_2

UART_REQ_5, The 3 selected baudrates, tc_3

Requirements list: 'req_list.csv'

▪ Same as before, but obviously:

• Will need to run all 3 testcases

• And Generate partial coverage from all

Partial coverage
'partial_cov_tc1.csv'

TESTCASE_NAME: tc_1

UART_REQ_1,tc_1,PASS

SUMMARY, tc_1, PASS

Partial coverage
'partial_cov_tc2.csv'

TESTCASE_NAME: tc_2

UART_REQ_2,tc_2,PASS

UART_REQ_3,tc_2,PASS

UART_REQ_4,tc_2,PASS

SUMMARY, tc_2, PASS

Partial coverage
'partial_cov_tc3.csv'

TESTCASE_NAME: tc_3

UART_REQ_5,tc_3,PASS

SUMMARY, tc_3, PASS

Get the right FPGA quality through Spec.Cov.22

▪ When multiple partial coverage files
→ List them in a text file

▪ Rather than including all arguments on
command line
→ Make a config file

▪ Run Pythion script to generate
summary files

Preparing Post-processing

'partial_cov_files.txt'

../sim/partial_cov_tc_1.csv

../sim/partial_cov_tc_2.csv

../sim/partial_cov_tc_3.csv

'config.txt'

-r ../tb/req_list.csv

-p ../tb/partial_cov_files.txt

-s summary.csv

*.req_compliance_minimal.csv
UART_REQ_1, tc_1, COMPLIANT
UART_REQ_2, tc_2, COMPLIANT
UART_REQ_3, tc_2, COMPLIANT
UART_REQ_4, tc_2, COMPLIANT
UART_REQ_5, tc_3, COMPLIANT

Get the right FPGA quality through Spec.Cov.23

▪ Does not in itself say anything about absolute quality

• Depends on developer really testing the right stuff

▪ Depends on a good req. spec.

• All relevant reqs. included

• Compound reqs. should be split into testable sub-reqs.

▪ Given good testcases that do what they are intended to do…:

• Specifiction coverage will track and assure that:
All requirements in a specification have been verified

Specification coverage: Summary

It is common to just - sometime during development
- tick off somewhere – that a particular requirement is tested;

often just as a mental exercise..

It is always better to use a written, repeatable and automated approach.

This VIP significantly simplifies such an approach.

Get the right FPGA quality through Spec.Cov.24

▪ UVVM is used by many FPGA/ASIC designers for:

• ESA/NASA mission critical

• DO-254

• High quality in general

▪ UVVM specification coverage

• Was developed in cooperation with ESA (Project 2)

• Is updated/extended in our current 3rd ESA project

▪ You may pick any part UVVM without a "lock-in"

• Works with any other VHDL testbench methodology or legacy TBs

▪ Will result in

➔ Significant quality improvement

➔ Significant efficiency improvement

➔ Far less boring, time-consuming manual documentation

UVVM – Spec. Cov. - Summary

Get the right FPGA quality through Spec.Cov.25

EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

Thanks for your attention

The leading FPGA design centre in Norway and Scandinavia (www.emlogic.no/leading)

Get the right FPGA quality
through

Efficient Verification
and Requirements Tracking

	Lysbilde 1: Get the right FPGA quality through Efficient Verification and Requirements Tracking
	Lysbilde 2
	Lysbilde 3: What is UVVM?
	Lysbilde 4: The ESA projects
	Lysbilde 5: What enables Quality and Efficiency
	Lysbilde 6
	Lysbilde 7: Lot’s of free UVVM BFMs and VVCs
	Lysbilde 8: Specification Coverage
	Lysbilde 9: Tracing the Requirements
	Lysbilde 10: Efficient Specification Coverage
	Lysbilde 11: Example case
	Lysbilde 12: Introduction & Simple Case
	Lysbilde 13: Multiple testcases – simple usage
	Lysbilde 14: Multiple Testcases
	Lysbilde 15: What if a test fails?
	Lysbilde 16: Advanced spec. cov.
	Lysbilde 17: Getting started with Spec. Cov - A step-by-step demo
	Lysbilde 18: Simple case – with no test cases specified
	Lysbilde 19: Simple case: Coverage (1)
	Lysbilde 20: Simple case: Coverage (2)
	Lysbilde 21: Simple case: Coverage summary
	Lysbilde 22: Simple case (using requirements): But now with testcase specified
	Lysbilde 23: Preparing Post-processing
	Lysbilde 24: Specification coverage: Summary
	Lysbilde 25: UVVM – Spec. Cov. - Summary
	Lysbilde 26: Thanks for your attention

