
VHDL Conventions

Use English for all code, names and comments

Never use reserved words (VHDL, Verilog) as names

Write names that are meaningful to anyone

Separate words with underscore. (But skip underscore where English may use hyphen)

Single character before first underscore or after last underscore is not allowed other than for reserved 
prefixes or suffixes (or if dictated by ext. IP)

Make lots of good comments (On Why, - and normally not on What)

Always write a header for code segments (incl. processes, loops and multiple lines doing a common
funct.)

Labelling is mandatory for processes, generates, blocks,
Closing labels are also mandatory

Use positive logic only (i.e. not cs_n or similar - other than as connection to external IP or PCB)

Use positive naming when feasible (enable rather than disable)

Compound Functional names should normally be written with the most important subname first (e.g.
uart_tx)

Exceptions to this rule could be made for clocks, resets and interrupts; - like clk_rtc and
irq_uart_tx_ready. Sometimes it also makes sense to write the interface name first - if a signal is
clearly a part of that interface (e.g. axi_clk, but normally not similar for SBI)

For signals going between modules, use one of
<name>_<source>2<dest>
<name>2<dest>
<source>_<name>

General rules lowercase / UPPERCASE
Lowercase to be used for all code apart from

Uppercase for constants defined in Entities and Packages
Uppercase for constants in procedures
Uppercase for Generic Constants
Uppercase for enumerated literals

Underscores should be used for clarity

Use sectioning and space to increase readability

Use a tabular layout, aligning groups of statements

Code layout



Module entity
Stand alone function

FPGA top level entity

Submodule entity
Either functional name or use module-
name as prefix

Instance
Use functional name as suffix as default.
May also prefix by i[#]_ as an alternative.
(Exception for generate)

Testbenches and harness
a) TB for uart
b) TB for uart_rx
c) TB for testing RX in uart
d) TB with special purpose
e) Test harness for the same as above

VIP variants

Architecture naming
Functional / RTL (including hierarchical):
Multiple architectures:

Behavioural

Testbench architecture or harness

Special purpose
(e.g. netlist, low power, device spesific)

Entity and Instance naming

Package naming
Module or entity spesific

General packages

VIP variants

uart

<the FPGA name>

baudrate_ctrl, uart_rx

i_uart, i3_uart, i_uart_host_if, i_fifo_addresses,
i_cmd_queue

a) uart_tb
b) uart_rx_tb (uart_<func inside uart>_tb)
c) uart_tb_rx (uart_tb_<func to test in full uart>)
d) uvvm_tb_demo
e) same as above but ‘th’ rather than ‘tb’

uart_vvc, uart_tx_vvc

rtl
rtl_func

bhv - or other function name
(not RTL)

Functional name: e.g. func,
corner, tx, rx_test

Any meaningful name
(rtl_<func>) for RTL

uart_pkg, uart_pif_pkg, uart_pif_priv_pkg
(Use ‘priv’ if private. Default is public)

<name>_pkg (e.g. common_methods_pkg)

uart_bfm_pkg
vvc_methods_pkg

Company dedicated library

Project dedicated library

Vendor dedicated library

Library naming
emlogic_supports_comps emlogic_space_wire
emlogic_vip_space_wire

<module/functionality-name> or
[<project-name>_]<module/functionality-name>

<venfor-name>_name, unless already given a
library name

File naming
Default

If additional architectures

Packages

<most primary unit in file>.vhd (see Entity name)
uart.vhd, uart_rx.vhd, uart_tb.vhd

Entity: <entity-name>_ent.vhd
Arch: <entity-name>_<arch-name>.vhd
e.g. uart_ent, uart_bhv.vhd, uart_rtl_low_power.vhd

uart_pkg.vhd e.g. common_methods_pkg.vhd



Prefixes - For Signal, Var., Const., etc.

Signal

Global signal
def. in pkg

Variable

Shared varrable (of protected type)
Unprotected is no longer allowed

Constant

Generic constant

Enumeration literals

Alias

Alias
Hierarchical reference

Register address constants
locally

Register address constants
Icentrally/top-level

Address offset

Vector (any kind)

Single dimensional array

Multi dimensional array

Number (any kind)

Type range restrictions
Range N downto M, (M=0 or justify other)

Same as vector, so also name
<element>_vector, always range N downto
M. Exception for ‘string’, which is
normally range 1 to N.
Other exceptions using range N to M
should be named <element>_array

Use good explanatory names.
Dimension 2 is often range N to M, but a
word-array (of SLV) would often be N
downto M

Must define range

std_logic_vector

unsigned

signed

Integer, natural, positive

Enumerated, Boolean,
Records

Type usage restrictions
Never use if object is always representing
a number

Use for ALL objects representing an
unsigned number (unless natural is better)

Use for ALL objects representing a signed
number (unless integer is better)

Typically use for indexes and pointers ONLY
use when really well understood. Always
restrict range. Never use for primary I/O
(for synthesis). Use strictest possible
type (i.e. positive if only positives if
using unconstrained)

Use anywhere, but never use for FPGA
primary I/O (for synthesis)

<name> (no prefix)

global_<name> (May skip ‘global_’ for very well
known names, like VVC signals in UVVM)

v_<name> (def. in process NOT register)
vr_<name> (def. in process. Intended register)
<name> (formal parameter in subroutine)
v_<name> (def. inside protected type)

shared_<name>

C_<NAME> (normal constants)
<name> (formal param. subroutine)
C_<NAME> (defined in subroutine)

GC_<NAME>

[<TYPE>_]<NAME> (TYPE = User type name) or
S_<NAME> (recommended for FSM, but not mandatory.
Typically very useful when referring to states
from outside the FSM, but less useful for plain
and simple FSMs)

a_<name>

ha_<name>

C_ADDR_<reg-name>
e.g. C_ADDR_ERROR_FLAGS

C_ADDR_<module-name>_<reg-name>
e.g. C_ADDR_UART1_ERROR_FLAGS

C_ADDR_OFFSET_<module-name>
e.g. C_ADDR_OFFSET_UART1



Process

Procedure

Function

Type

Generate

Loop label (optional)

Prefixes - other
p_<name>

<name>

<name> (min 1 param otherwise use ‘VOID’)

t_<name>

g_<name>

l_<name>

Active low
avoid

Asynchronous

Synchronized

Delayed
i.e. all in the same block
domain

pipeline stage _p#

Differential pair

Toggle-signal
to indicate valid on toggle,
i.e. not a boolean signal

Suffixes

-n

_a

_s# (1..N)

-d# (1..N)
(may also sometimes use sr for shift reg.)

_p# (1..N)
(May also sometimes use sr for shift reg.)

_dp and _dn

_tgl

Fixed names and abbreviations

clk
clk_<funct-name>

clock_<funct-name>
<funct-name>_clock

rst, arst
rst<_clk-name>, rst_30, rst_uart
<interface prefix>_rst

‘clk’ may only be used for signals going to flop
or memory clock inputs. E.g. a clock just going
out of the FPGA to for instance an external DAC
should NOT use ‘clk’ in the name, but rather for
instance ‘clock’

Never use this for a signal going to a flop or
memory clock inputs
(see clk above)

Reset (rst: synchronous, i.e. not immediate)
(arst: asynchronous reset, i.e. immediate)
See ‘Compound Functional names’ under ‘General
rules’ at the beginning

Intended purely as extra info for signals/variables/const. If multiple suffixes apply,
add them in alphabetical order (e.g. <name>_a_n) Note a number is mandatory
for their given # below Allowed abbreviations

ack

addr

c2p, p2c

clr

cmd

cnt

ctrl

dest

din, dout

acknowledge

address

Signals from core to pif, or pif to core respectively
(e.g. inside a module with records between PIF and core)

clear

command

count(er) (Actual count value. cd idx)

control(ler)

destination

data in, data out



Allowed abbreviations
ena

err

idx, idx1

irq

lsb, lsw

msb, msw

num

pif

ptr

rd, wr / rena, wena

rdata, wdata

rdy, vld

src

sync, async

tb, th, tc

tmp

tx, rx

enable

error

index (Use idx when first element 0, otherwise idx1 when first element is 1)

interrupt / interrupt request

least significant bit/word (for byte use lsbyte)

most significant bit/word (for byte use msbyte)

number (of), (do not use ‘no’)

processor interface

pointer

read, write (Either set may be used, depending on scenario)

data in, data out (same as ‘din, dout’, but used in different scenarios)

ready, valid

source

synchronous, asynchronous.red

Suffixes for test-bench/harness/case

temporary

transmit/recieve (Use more explanatory name when any misunderstanding is
possible. E.g. use uart_1_tx, tx_moduleA2moduleB, tx_uart1_to_uart3)

VHDL Conventions
https://emlogic.no/vhdl-conventions/


